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The purpose of this paper is to elucidate a proof of the following theorem, which basically says that a
lattice polytope with many vertices must also have large volume (or, contrariwise, a lattice polytope with
small volume cannot have very many vertices).

Theorem 1. For any lattice polytope P in Rd,

| vert(P )| ≤ cd Vol(P )
d−1
d+1 .

The constant cd depends only on the dimension d.

In comparison, |Zd∩P | ≤ c′d Vol(P ) is the best possible inequality comparing the volume of a lattice polytope
to the number of lattice points it contains (see Lemma 2).

As Imre Bárány’s notes in his paper Random points and lattice points in convex bodies [1], the original
proof of G. E. Andrews in 1963 is not easy and while “there are several other proofs available, . . . none of
them is simple.”1 That’s a shame, because this is a very nice theorem: It’s tight up to the constant (see
Section 4.2), and it exhibits a fundamental difference between the number of lattice points contained in a
lattice polytope and the number of vertices of a lattice polytope.

This note is a retelling of Konyagin and Sevast’yanov’s proof of Theorem 1 in [2], with the goal of making
the overall strategy more evident and the underlying geometry more apparent. Reading their proof is like
being grabbed firmly by the arms and marched steadily and unyieldingly through a formidable concrete
hallway until you stumble over the conclusion you were trying to reach. It’s there, sure enough, but you
have to wonder why you took such an odd journey to get there, and why in the middle of the march you
had to pirouette several times, and now that you think about it, why you walked the whole way backwards
rather than forwards. That said, their proof does have an appealing structure, and if you dismiss the guide,
re-plot the journey, and do a bit of interior decorating, it’s actually very satisfying.

Let’s get to it.

1. the strategy

In broadest terms, the strategy is simple: Induction on the dimension.
The case d = 1 is easy, since any polytope in R1 has at most two vertices. Now we move up.
Suppose P ⊆ Rd has m vertices and k facets, which we’ll call F1, . . . , Fk; suppose that Fi has mi vertices.

The hyperplane containing Fi intersects Zd in an affine sublattice of dimension d−1; let Πi be its fundamental
parallelotope. Theorem 1 applied to Fi in this sublattice tells us that

mi ≤ cd−1

(Vold−1(Fi)

Vold−1(Πi)

) d−2
d

. (∗)

To use induction, we bound m by
∑k

i=1 mi and then use the previous inequality to bound each term in
this sum by some function of the (d − 1)-dimensional volume of the facets. The problem with this is that
it’s impossible to upper bound the surface measure by any function of the volume. As an example, take the
usual unit hypercube conv({0, 1}d) and slide the top facet far away from the bottom facet. (For example,
so that the vertices are {0, 1}d−1 ×{0} and {a, a+1}× {0, 1}d−2 ×{1} for some a ∈ Z.) The volume of this
polytope is always 1, but the surface measure tends toward infinity.

Luckily, there is a fix, called the reverse isoperimetric inequality : (see Section 4.1 for a proof 2)

Lemma 1. For any convex body C in Rd, there is a volume-preserving linear transformation A so that

Vold−1

(
∂A(C)

)
≤ cd Vol

(
A(C)

) d−1
d .

Our new strategy is to use the bound

mi ≤ cd−1

(Vold−1

(
A(Fi)

)
Vold−1

(
A(Πi)

)) d−2
d

,

1 See the citations after Theorem 13.1 in [1] for references to other proofs.
2 To focus on the main ideas of the proof, proofs of various lemmas and tangential statements have been moved to Section 4.
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which follows from (∗) simply because the ratio of two volumes is invariant under linear transformation (even
though the actual quantity Vold−1

(
A(Fi)

)
is likely different). The outline of the proof is then:

1. Calculate Vold−1

(
A(Πi)

)
to obtain an upper bound for mi in terms of Vold−1

(
A(Fi)

)
.

2. Use the reverse isoperimetric inequality to convert this into a bound on volume.
That’s it! Now it’s time to follow through.

2. the calculations

2.1. volume bound on fundamental parallelotopes

Instead of estimating Vold−1

(
A(Πi)

)
directly, let’s start with the easier task of estimating Vold−1(Πi). To

do this, we’ll introduce the vector hi, which is a normal vector to Πi of length |hi| = Vold−1(Πi). The
excellently convenient fact about this vector is that it has integer coordinates. There are two ways to see
this, one by matrix manipulation and the other geometrically; both can be found in Section 4.3. Either way,
now comes the clever bit.

Order the indices so that |h1| ≤ · · · ≤ |hk| (in other words, so that the volumes of Πi form a nondecreasing
sequence). For any ℓ, we have

Vol
(
conv(0, h1, . . . , hℓ)

)
≤ Vol(Bd)|hℓ|d,

since all the vectors h1, . . . , hℓ are contained inside the ball of radius |hℓ|. (Bd is the unit ball.) But we can
also get a lower bound for the volume based only on the fact that it contains at least ℓ integer points: the
points h1, . . . , hℓ themselves.

Lemma 2. If X ⊆ Zd does not lie in a single hyperplane, then

Vol
(
conv(X)

)
≥ |X| − d

d!
.

For a proof, see Section 4.4. At this point, we want to write

ℓ− d

d!
≤ Vol(Bd)|hℓ|d

and conclude that |hℓ| ≳ (ℓ− d)1/d. (The symbol ≳ means that the inequality is true up to a constant that
depends only on the dimension.) However, this is only true if h1, . . . , hℓ span Rd. But if this condition holds,
combining this inequality with (∗) tells us that

m
d/(d−2)
i (ℓ− d)1/d ≲ Vold−1(Fi).

It turns out that we can still bound m even under this restriction on ℓ:

Lemma 3. If t is the largest index such that h1, . . . , ht is contained in a proper subspace of Rd, then m ≤∑k
i=t+1 mi.

Proof . Let w be any vector orthogonal to the (d − 1)-dimensional subspace containing h1, . . . , ht. Each
vertex of P is contained in a facet whose normal vector is not perpendicular to w (in other words, a facet
that is not parallel to w), so

m ≤
∑

⟨hi,w⟩̸=0

mi ≤
k∑

i=t+1

mi.

The last technicality to tidy up is that we actually want a bound on the volume of A(Πi), not Πi. But
this is fairly simple. Let A−⊤ denote (A−1)⊤ = (A⊤)−1. The vector A−⊤(hi) is perpendicular to A(Π),
and |A−⊤hi| = Vold−1

(
A(Πi)

)
. (Verifying this is straightforward linear algebra; see Section 4.5.) Now just

repeat everything from above, but with A(Πi) in place of Πi and A−⊤hi in place of hi. If r is the largest
index so that A−⊤h1, . . . , A

−⊤hr is contained in a hyperplane, then

m ≤
k∑

i=r+1

mi
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and
m

d/(d−2)
i (ℓ− d)1/d ≲ Vold−1

(
A(Fi)

)
for every ℓ ≥ r + 1. Now we’re ready to use this bound on volume to obtain a bound on m.

2.2. stringing inequalities

To start, apply Hölder’s inequality with p = (d− 2)/d:

m ≤
k∑

i=r+1

mi ≤
( k∑

i=r+1

m
d

d−2

i (i− n)1/d
) d−2

d
( k∑

i=r+1

(i− d)−
d−2
2d

)2/d

.

The main benefit of this is that the first of the two sums is now exactly what we found in the previous

section, so we can bound it by
(∑

i Vold−1

(
A(Fi)

))(d−2)/d

. Now we just need to tackle the second sum. Let

m̂ :=
∑k

i=r+1 mi. Since mi ≥ 1 for each i, we have that k ≤ m̂. Therefore

k∑
i=r+1

(i− n)−
d−2
2d ≲

∫ k

r+1

(x− d)−
d−2
2d dx ≲ (k − d)

d+2
2d ≤ k

d+2
2d ≤ m̂

d+2
2d .

Altogether, we now have that

m̂ ≤
( k∑

i=r+1

Vold−1

(
A(Fi)

)) d−2
n

m̂(d+2)/d.

Combining the powers of m̂ and bounding the sum by Vold−1

(
∂A(P )

)
, then applying the reverse isoperimetric

inequality, we get

m̂(d2−d−2)/d ≤ Vold−1

(
∂A(P )

) d−2
d ≲ Vol

(
A(P )

) (d−1)(d−2)

d2 .

Taking each side to the power of d/(d+ 1)(d− 2), and remembering that m ≤ m̂, finishes the proof.

3. a stronger result

With a small addition to the proof, we can obtain something stronger. A tower or flag of a polytope P is
a sequence G0 ⊂ G1 ⊂ · · · ⊂ Gd where each Gk is a k-dimensional face of P . We let T (P ) denote the total
number of towers in P .

Theorem 2. For any lattice polytope P in Rd,

T (P ) ≲ Vol(P )
d−1
d+1 .

The towers satisfy the recurrence T (P ) =
∑k

i=1 T (Fi), which means that you can nearly prove Theorem 2
by copying the proof of Theorem 1, replacing m by T (P ) and mi by T (Fi). The only part that falters is
Lemma 3. It’s simply never true that T (P ) ≤

∑k
i=r+1 T (Fi). However, throw in a constant and everything

is fine:

Lemma 4. If t is the largest index such that h1, . . . , ht is contained in a proper subspace of Rd, then∑k
i=t+1 T (Fi) ≥ 1

dT (P ).

Proof . As before, let w be any vector orthogonal to the (d− 1)-dimensional subspace containing h1, . . . , ht.
We will show that ∑

⟨hi,w⟩̸=0

T (Fi) ≥
1

d
T (P ).

The left-hand sum is equal to the number of towers of P that do not include a face that is parallel to w. (A
face is parallel to w if its affine span contains a translate of w.) Given a vertex v, let Tv(P ) denote the set
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of towers of P whose 0-dimensional face is v, and let T w
v (P ) denote the subset of towers in Tw

v (P ) which do
not include a face parallel to w. We will prove that |T w

v (P )| ≥ 1
d |Tv(P )|. Since T (P ) =

∑
v |Tv(P )|, that

suffices to prove the lemma.
If Gk is a k-dimensional face not parallel to w, then it is contained in at least d − k faces of dimension

k + 1 and at most one of them is parallel to w. Using this fact starting from a single vertex, we have

|T w
v (P )| ≥ d− 1

d

d− 2

d− 1
· · · 2

3

1

2
|Tv(P )| = 1

d
|Tv(P )|.

Theorem 2 also implies a version of Theorem 1 for faces of all dimension:

Theorem 3. There exists a constant cd so that for every lattice polytope P in Rd, the number of k-
dimensional faces of P is at most cd Vol(P )

d−1
d+1 .
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4. the rest of the proofs

4.1. reverse isoperimetric inequality

John’s theorem quickly proves this theorem, though not with an optimal constant.
Choose A so that the largest-volume ellipsoid contained inside A(C) is a ball B. Since both sides of the

inequality are linear under scaling by a constant factor, we may assume that Vol
(
A(C)

)
= 1. It suffices

therefore to show that Vold−1

(
∂A(C)

)
is bounded by a constant. This follows from John’s theorem, which

implies that A(C) ⊆ d ·B ⊆ d ·Bd, where Bd is the unit ball. So we can take cd = dd−1 Vold−1(∂B).

4.2. Theorem 1 is tight

The example is surprisingly simple. Let X be the set of points

X =
{
(x, ∥x∥2) ∈ Zd : x ∈ {−n,−n+ 1, . . . , n− 1, n}d−1

}
.

We will take P = conv(X).
Since x 7→ ∥x∥2 is a convex function, X is a set of points in convex position, so P = conv(X) has exactly

|X| = (2n+ 1)d−1 vertices. The exact volume of P might be difficult to calculate, but P certainly contains
the pyramid with apex at the origin and whose base has vertices {±n}d−1 ×{dn2}. The volume of this cone
is

1

d
(2n)d−1dn2 = 2d−1nd+1.

Thus
Vol(P )

d−1
d+1 ≥ Cd |vert(P )|

for a suitable choice of constant Cd.

4.3. normal vector to the parallelotope

Proposition 5. Given d − 1 vectors v1, . . . , vd−1 ∈ Zd, either vector orthogonal to their span and whose
length is equal to the (d− 1)-dimensional volume of the parallelotope generated by v1, . . . , vd−1 is a member
of Zd.

We prove this in two ways.

the matrix method

Arrange the vectors v1, . . . , vd−1 as columns in a matrix M , and define h by its coordinates: hi is the
determinant of M after deleting the ith row. This is a general way of producing a vector orthogonal to d− 1
others. To verify that h is orthogonal to vi, we can use the cofactor formula for the determinant to see that
⟨h, vi⟩ is equal to the determinant of the matrix with columns v1, . . . , vd−1, vi, which is 0, since 1 column is
repeated.

If v1, . . . , vd−1 ∈ Zd, then by definition h ∈ Zd. We need to calculate |h|. Let B be the (d−1)-dimensional
volume of the parallelotope generated by v1, . . . , vd−1. On the one hand, |h|2 = h2

1+ · · ·+h2
d. Also, since h is

orthogonal to v1, . . . , vd−1, we know that det(h, v1, . . . , vd−1) = |h| ·B. On the other hand, direct calculation
using the cofactor formula shows that det(h, v1, . . . , vd−1) = h2

1 + · · ·+ h2
d. We conclude that |h|2 = |h| · B,

so |h| = B, as desired.

the geometric method

If v ∈ Zd and the set of coordinates of v has greatest common divisor 1 (in which case v is called primitive),
then the projection of Zd onto span(v) is the set of points k

|v|v with k ∈ Z. (This is because the vector w

projects onto the point ⟨w,v⟩
|v| v, and if v is primitive, then there is a solution to ⟨w, v⟩ = k for every k ∈ Z.)

If v /∈ Zd, then the projection of Zd onto span(v) is dense.
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Let h′ be a unit vector orthogonal to v1, . . . , vd−1. The projection of a lattice onto the orthogonal
complement of any sublattice is also a lattice, so the projection of Zd onto span(h′) is a sublattice. Let B
be the (d− 1)-dimensional volume of the parallelotope generated by v1, . . . , vd−1, let Bf be the volume of a
fundamental parallelotope in span(v1, . . . , vd−1), and let w be a vector that projects to a minimal nonzero
vector ρ(w) in span(h′). Then v1, . . . , vd−1, w generate a fundamental parallelotope in Zd. The volume of
this parallelotope is therefore 1, which means that the orthogonal component of w is 1/Bf . In other words,
|ρ(w)| = 1/Bf .

Therefore the projection of Zd onto span(h′) is k
Bf

h′. Using the reasoning from the first paragraph, we
conclude that Bf · h′ is a lattice vector. Since Bf divides B, we also have that h := B · h′ is a lattice vector.

4.4. volume vs. total lattice points

Here is the fundamental fact that connects volume to lattice points:

Lemma 6. The volume of a lattice simplex in Rd is at least 1/d!.
Proof . By elementary calculus, the volume of a cone in Rd with base (d−1)-volume B and height h is hB/d.
Suppose that S is a simplex, and let v1, . . . , vd be the vectors corresponding to the edges emanating from
one of its vertices. Induction shows that the volume of S is exactly equal to 1/d! times the volume of the
parallelotope determined by v1, . . . , vd. That volume is given by |det(v1, . . . , vd)|. If S is a lattice simplex,
then v1, . . . , vd are integer vectors. Since det(v1, . . . , vd) ̸= 0, we have

Vol(S) ≥ |det(v1, . . . , vd)|
d!

≥ 1

d!
.

One way to prove Lemma 2 is to actually prove the stronger statement that any lattice polytope can
be decomposed into at least |X| − d lattice simplices. Lemma 6 then implies Lemma 2. The proof of this
stronger statement goes by induction on |X|. Intuitively, it’s pretty clear: remove one vertex v from X and
find a lattice simplex in conv(X) \ conv(X \ v); then repeat. Writing it out in full is somewhat tedious, so
I’ll leave it for you to think about.

There are many examples that show that Lemma 2 is tight (up to the constant). One simple example is
taking X = {0, 1, 2, . . . , n}d−1 × {0, 1}, which has 2(n+ 1)d−1 lattice points and a convex hull with volume
nd−1.

4.5. miscellaneous linear algebra

Lemma 7. If u, v ∈ Rd are orthogonal and A is any linear transformation, then A−⊤v is orthogonal to Au.
Proof . Calculate: ⟨A−⊤v,Au⟩ = ⟨v,A−1Au⟩ = ⟨v, u⟩ = 0.

Lemma 8. Given v1, . . . , vd−1 ∈ Rd, let Q be the parallelotope they generate, and let h be a vector orthogonal
to v1, . . . , vd−1 with length |h| = Vold−1(Q). If A is a volume-preserving linear transformation, then A−⊤h
is orthogonal to A(Q) and has length |A−⊤h| = Vold−1

(
A(Q)

)
.

Proof . Let R be the parallelotope generated by v1, . . . , vd−1, h. Since A is volume-preserving and h is
orthogonal to Q,

Vol
(
A(R)

)
= Vol(R) = Vold−1(Q)2.

On the other hand, the volume of A(R) is the volume of the base times the length of the orthogonal component
of Ah:

Vol
(
A(R)

)
=

⟨Ah,A−⊤h⟩
|A−⊤h|

Vold−1(Q) =
|h|2

|A−⊤h|
Vold−1(Q) =

Vold−1(Q)3

|A−⊤h|
.

Chain the inequalities and cancel terms to get |A−⊤h| = Vold−1(Q).
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