
Toppling sandpiles
Travis, Mathcamp 2024

On a strangely mathematical beach nearby, there are piles of sand that behave in very precise way. The
piles are arranged like this:
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On each pile, there are several grains of sand, but as you know, sandpiles are not very stable. So if there
are at least as many grains of sand as edges connected to the pile, the pile of sand will topple and send
one grain of sand along each edge to the other vertices. This might make other sandpiles topple, and this
continues until all the sandpiles are stable. For example:

3

1

2

1

3
3

1

2

1

2
3

1

2

1

Except the black dot doesn’t represent a sandpile, but a bottomless pit. Any sand that falls into the pit
disappears forever. So the toppling from the previous example actuallyactuallyactuallyactuallyactuallyactuallyactuallyactuallyactuallyactuallyactuallyactuallyactuallyactuallyactuallyactuallyactually looks like this:
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Since no more sandpiles can topple, that’s the final stable configuration.

Question 1. For each of the following examples, what final sandpiles come about after everything topples?
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Question 2. Do you notice anything interesting about this process?

Question 3. Does every sandpile eventually stop toppling?

Question 4. Does it matter in what order the individual piles are toppled?

If a sandpile can’t be toppled any more, we call it stable. We’ve found that starting with any sandpile s,
there is a unique stable sandpile s that comes from toppling until there’s nothing left to topple. Using this
fact, we can define some operations on two sandpiles s1 and s2. First, s1 + s2 is what you get by stacking
the sandpiles on top of each other. If s1 has 2 grains of sand on vertex 1 and s2 has 3 grains of sand on
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vertex 1 , then s1 + s2 has 5 grains of sand on vertex 1 . And you can get another sandpile by toppling the
result:

s1 ⊕ s2 := s1 + s2.

For example:
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So + is an operation on sandpiles, while ⊕ is an operation on stable sandpiles.
Question 5. Is ⊕ commutative? associative? Does it have an identity?
Question 6. Does every stable sandpile have an inverse? (If s1 is a stable sandpile and s1⊕s2 is the identity,
then s2 is an inverse of s1.) If yes, what how can you find it? If no, which elements do have inverses?

Here is a little experiment we can try with sandpiles. Start with a flat, empty sandpile, and add a grain
of sand at a random vertex. Then add another grain of sand to a random vertex and topple until you get to
a stable sandpile. Then add another random grain and topple; then again and again and again. If you run
this experiment and keep track of which stable sandpiles occur, you’ll get results like this:

Each column represents a single trial, and each entry is the number of times that a specific stable sandpile
appeared in the trial. (The notation (a, b, c) means that there are a grains of sand on vertex 1 , b grains of
sand on vertex 2 , and c grains of sand on vertex 3 .)
Question 7. What do you notice about this table?

The set of stable sandpiles with the operation ⊕ isn’t a group. But it turns out that these “recurring”
sandpiles are a group! And that’s strange—what could the identity even be???

We’ll find out tomorrow :)

bonus
Question 8. What happens if we replace the diamond graph with a different one? Do your answers to
Questions 3–6 change?
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We use the notation s to denote the unique sandpile you get from toppling s.

Exercise 9. Prove that s1 + s2 = s1 + s2.

A stable sandpile s is called recurrent if for every sandpile a there is another sandpile b such that s = a⊕b.

Exercise 10. Show that this sandpile is recurrent:
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We call this sandpile smax.

Exercise 11. Show that s is recurrent if and only if there is a sandpile b such that s = smax ⊕ b.

Question 12. Remember the experiment from yesterday, where we repeatedly dropped a random grain of
sand and stabilized. Why do you expect to eventually reach a recurrent sandpile? Explain why, once you
reach a recurrent sandpile, every sandpile afterward is also recurrent.

Let S denote the set of recurrent sandpiles.

Theorem. S with the operation ⊕ is a group.

This is a bold claim: The “obvious” identity element—with 0 grains at every vertex—is not a recurrent
sandpile! So let’s see what’s really going on.

We know that ⊕ is commutative and associative, so we need to prove that there is an identity and that
every recurrent sandpile has an inverse.

Exercise 13. Prove that e := 2smax − 2smax is a recurrent sandpile and is the identity. (What is this
sandpile explicitly?)

Exercise 14. Show that every recurrent sandpile has an inverse: If s is recurrent, then there is another
recurrent sandpile a so that s⊕ a = e.

Question 15. Suppose we change the graph. How should we define smax so that Exercise 11 remains true?
What happens with Exercises 13 and 14?

bonus questions
Exercise 16. Prove that s is recurrent if and only if e⊕ s = s.

Exercise 17. Suppose that s is recurrent. Show that on any pair of adjacent vertices (in which neither is
the pit), at least one of those vertices has at least one grain of sand.

Exercise 18 (Challenge). Suppose that T is a set and ∗ is an operation on T . The pair (T, ∗) is a commutative
monoid if ∗ is associative and commutative and has an identity element. The “sum” of two subsets A,B ⊆ T
is defined as

A ∗B := {a ∗ b : a ∈ A and b ∈ B}.

A subset I ⊆ T is called an ideal if I ∗ T = I. An ideal is minimal if it does not contain any smaller ideal.
Suppose that T is a finite commutative monoid.

(i) Prove that the intersection of two ideals is an ideal.
(ii) Prove that T has exactly one minimal ideal.
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(iii) Let M denote the minimal ideal. Prove that c ∈ M if and only if for every a ∈ T , there is a b ∈ T
such that a ∗ b = c. Moreover, prove that if c ∈ M , then for any a ∈ T , there is a b ∈ M such that
c = a ∗ b.

(iv) Prove that there is an element e ∈ M such that e2 = e. [Hint: consider the sequence a, a2, a3, . . . for
some element a ∈ M .]

(v) Prove that e ∗ a = a for any element a ∈ M .
(vi) Prove that (M, ∗) is an abelian group.
(vii) Suppose that T is the set of stable sandpiles. Prove that

1. M = S, the set of recurrent sandpiles.
2. M is a principal ideal, meaning that there is an element c ∈ T such that M = {c} ∗ T .

fun facts
Fun fact #1! The number of elements of the sandpile group is equal to the number of spanning trees of
the graph.
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It’s true.

Fun fact #2! If you change the location of the pit, the sandpile groups remain isomorphic.
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Also true.
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