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1. random graphs
The standard way to produce a random graph is

Definition 1. For each n ∈ N and 0 < p < 1, the Erdős-Rényi random graph G(n, p) is generated by taking
n vertices and adding each edge independently with probability p.

For example, to generate G(n, 1/2), start with n vertices. Then, for each pair of vertices, flip a coin. If
it comes up heads, draw an edge; if tails, do nothing. This way of generating a random graph turns out
to be useful in nonconstructive combinatorial proofs; Yuval probably talked about this in his Probabilistic
Method class. And there are interesting questions that you can ask about the model itself. For example,
how big does p have to be for it to be more likely than not that G(n, p) is connected?

But we’re not going to worry about any of that. We’ll skip right to the infinite stuff:

Definition 2. For each 0 < p < 1, the countable Erdős-Rényi random graph G(N, p) is generated by taking
infinitely many vertices, one for each natural number, and adding an edge between each pair of vertices
independently with probability p.

The first thing that we can note is this:

Proposition 3. G(N, p) contains any given finite graph H as an induced subgraph with probability 1.
Proof . Say that H has n vertices and e edges. The probability that H is an induced subgraph on the vertex
set {1, 2, . . . , n} is pe(1− p)(

n
2)−e. The same for the vertex set {n+1, n+2, . . . , 2n}. So the probability that

H is not an induced subgraph of G(N, p) is at most
∞∏
i=1

(
1− pe(1− p)(

n
2)−e

)
= 0.

2. alice’s restaurant
The crux of countable random graphs is this somewhat odd property.

Definition 4. A graph has Alice’s restaurant property if, for every collection of vertices v1, . . . , vn and
u1, . . . , um, there is a vertex x that is adjacent to every vertex v1, . . . , vn and is not adjacent to any vertex
u1, . . . , um. We call the vertex x Alice-adjacent to this vertex selection.

Why Alice’s restaurant? Well, in 1967, the folk singer Arlo Guthrie (son of Woody Guthrie, he himself
of This Land is Your Land fame) released a song called Alice’s Restaurant, whose second stanza starts with
the line “You can get anything you want at Alice’s Restaurant.”1 Then some mathematician thought of this
lyric and decided that was enough motivation to bequeath the name.

Proposition 5. With probability 1, the graph G(N, p) has Alice’s restaurant property.
Proof . The probability that the vertex z in G(N, p) is connected to each vertex v1, . . . , vn and to none of the
vertices u1, . . . , um is pn(1 − p)m. So the probability that there is no vertex that is Alice-adjacent to these
vertices is at most ∏

z

(
1− pn(1− p)m

)
= 0.

1 Incidentally, the first stanza of the song is “This song is called ‘Alice’s Restaurant.’ It’s about Alice, and the Restaurant, but
‘Alice’s Restaurant’ is not the name of the restaurant, that’s just the name of the song. That’s why I call the song ‘Alice’s
Restaurant.’ ”
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Let A(v1, . . . , vn;u1, . . . , um) denote the property that there is a vertex adjacent to all of v1, . . . , vn and none
of u1, . . . , um. The probability that G(N, p) does not have Alice’s restaurant property is at most∑

u1, . . . , um

v1, . . . , vn
∈N

m,n∈N

A(v1, . . . , vn;u1, . . . , um) = 0,

so G(N, p) has Alice’s restaurant property with probability 1.

In fact, Alice’s restaurant property contains the seeds of its own strengthening.

Definition 6. A graph satisfies Alice’s industrial restaurant property (or AIRP) if, for every v1, . . . , vn and
u1, . . . , um, there are infinitely many vertices z that are adjacent to v1, . . . , vn and not adjacent to u1, . . . , um.

Lemma 7. Any countable graph that satisfies Alice’s restaurant property also satisfies Alice’s industrial restau-
rant property.
Proof . Suppose that z1, . . . , zk are vertices adjacent to v1, . . . , vn and not adjacent to u1, . . . , um. Then
Alice’s restaurant property implies that there is a vertex zk+1 that is adjacent to v1, . . . , vn, z1, . . . , zk and
not adjacent to u1, . . . , um. So we can build an infinite list z1, z2, . . . of vertices that satisfy Alice’s restaurant
property.

Now, we get to the punchline:

Theorem 8. Any two countable graphs with Alice’s restaurant property are isomorphic.
Proof . We use the “back-and-forth method,” which is, in this case, really just a way of saying “just do it.”
Suppose that G and H are both countable graphs with Alice’s restaurant property.

We define a map f : V (G) → V (H) inductively as follows. Begin with A0 = B0 = ∅. At step n,
◦ Let akn

be the vertex of V (G) \An−1 with least index. Define Sn = {f(ai) : ai ∈ An−1 and (ai, akn
) ∈

E(G)} and Tn = {f(ai) : ai ∈ An−1 and (ai, akn) /∈ E(G)}. Because H has Alice’s industrial restaurant
property, there is a vertex brn ∈ V (H) \ Bn−1 with minimal index so that brn extends (Sn, Tn) (since
Bn−1 is finite). We set f(akn

) = brn . Define A′
n = An−1 ∪ {akn

} and B′
n = Bn−1 ∪ {brn}.

◦ Let br′n be the vertex in V (H) \ B′
n with least index. Define S′

n = {ai ∈ A′
n : (f(ai), br′n) ∈ E(H)}

and T ′
n = {ai ∈ A′

n : (f(ai), br′n) /∈ E(G)}. Since G has Alice’s industrial restaurant property, there is
a vertex ak′

n
∈ V (H) \ A′

n with minimal index so that ak′
n

extends (S′
n, T

′
n). We set f(ak′

n
) = br′n and

then define An = A′
n ∪ {ak′

n
} and Bn = B′

n ∪ {br′n}.
By the choice of the vertices, at the end of each step, f is an isomorphism between G[An] and H[Bn].
Moreover, {1, 2, . . . , n} ⊆ An, Bn, so the inductively defined function f is a bijection from V (G) onto V (H).
Thus f is an isomorphsim between G and H.

In other words, if you create two countable Erdős-Rényi random graphs, with probability 1 they will be
isomorphic.

This is astounding—you should be gasping with amazement right now. Think about how this compares to
finite graphs. The probability that two random graphs G(n, p) are isomorphic is small, and this probability
tends to 0 as n goes to infinity. And yet, there’s only one countably infinite random graph. Stupefied yet?

Definition 9. The unique countable graph with Alice’s restaurant property is called the Rado graph. We’ll
denote the Rado graph by R.

3. robustness
A switch consists of deleting or adding an edge.

Proposition 10. Any graph obtained from R by a finite number of switches is isomorphic to R.
Proof . We only need to show that the new graph R′ also satisfies Alice’s restaurant property; if it does, then
Theorem 8 shows that R′ and R are isomorphic. So fix v1, . . . , vn and u1, . . . , um. We know that R satisfies
AIRP, and there are only finitely many switches. So among all vertices satisfying Alice’s restaurant property
in R, there is a vertex z such that the edge switches relating R and R′ do not change any adjacencies (or
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non-adjacencies) between z and the ui and vi. This means that z also satisfies Alice’s restaurant property
in R′.

Here are two more in the same style:

Proposition 11. Any graph obtained from R by deleting a finite number of vertices is isomorphic to R.

Proposition 12. The graph obtained from R by switching all edges at a single vertex is isomorphic to R.

And one more of a slightly different flavor:

Proposition 13. If the vertices of R are partitioned into finitely many sets, the induced graph on one part
of the partition is isomorphic to R.

See problem 3 for a proof; problem 4 asks you to explain why it’s not true that all induced graphs are
isomorphic to R.

In fact, this property is (basically) unique to the Rado graph:

Proposition 14. If G is a countable graph that has the property that, whenever the vertex set is partitioned
into two parts, there is one parts whose induced subgraph is isomorphic to G, then G is either the empty
graph, the complete graph, or R.
Proof . Suppose that G is not empty. Let X be the set of isolated vertices in G and Y = V (G) \X. Since G
is not empty, G 6∼= X; but if X 6= ∅, then G 6∼= Y , either, since Y has no isolated vertices. We conclude that
if G is not empty, it has no isolated vertices. Similarly, if G is not complete, it has no vertex connected to
every other vertex.

We now assume that G is neither complete nor empty. Let k-ARP denote the statement that, for every
v1, . . . , vn and u1, . . . , um with n + m ≤ k, there is a vertex z connected to every v1, . . . , vn and to none
of u1, . . . , um. We will prove that G has Alice’s restaurant property (and is therefore isomorphic to R) by
proving that G satisfies k-ARP for every k ∈ N.

The first paragraph of the proof implies that G has 1-ARP. Suppose that G has k-ARP for some k ≥ 1 and
let V = {v1, . . . , vn} and U = {u1, . . . , um} be some distinct vertices of G with m+ n = k + 1. It’s possible
that m = 0 or n = 0, but since k ≥ 1, we can choose two nonempty sets A and B so that A t B = U ∪ V .
Call a vertex x ∈ V (G) bad for u ∈ U if it is connected to u, and call it bad for v ∈ V if it is not connected
to v. Define

X = {z ∈ V (G) \ (A ∪B) : z is bad for some vertex in A} ∪A

Y = {z ∈ V (G) \ (A ∪B) : z is bad for some vertex in B} ∪B.

If X ∪Y = V (G), then G can be partitioned into X and Y \X. By assumption, either G ∼= X or G ∼= Y \X;
you can check that this violates k-ARP. Otherwise, there is a vertex z ∈ V (G) \ (X ∪ Y ), which means that
z is connected to every vertex in V and no vertex in U . So G has (k + 1)-ARP.

4. the 0–1 law for random graphs
Let P be a property of graphs. (That is, every graph either does or does not have property P , but not both.)
Let πn(P ) denote the probability that G(n, p) has property P . If limn→∞ πn(P ) exists, we denote the limit
by π(P ).

A first-order statement in the language of graph theory is a (finite) statement that uses only
◦ quantifies ∃ (there exists) and ∀ (for all);
◦ variables x1, x2, . . . (for vertices)
◦ relations = (equality) and ∼ (adjacency)
◦ usual Boolean connectives ∧ (and), ∨ (or), ¬ (negation), and ⇒ (implies)

For example, the statement that a graph has no isolated vertices is:
∀x∃y (x ∼ y).

The statement that a graph contains a triangle is
∃x, y, z

(
(x ∼ y) ∧ (y ∼ z) ∧ (z ∼ x)

)
.
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And the statement that the diameter of a graph is at most 2 is

∀x, y∃z
(
(x = y) ∨ (x ∼ y) ∨

(
(x ∼ z) ∧ (z ∼ y)

))
.

There is a very surprising theorem about first-order statements and graphs:

Theorem 15 (0–1 Law). If P is a first-order statement in the language of graph theory, then limn→∞ πn(P )
exists and either π(P ) = 0 or π(P ) = 1.

In other words, every first-order statement about graphs either is true for almost every graph or is false
for almost every graph.

Let’s prove it.
For each m,n ∈ N, let σm,n denote the first-order statement

∀x1, . . . , xm∀y1, . . . , yn

 ∨
1≤i≤m
1≤j≤n

(xi = yj) ∨
(
∃z

∧
1≤i≤m

(z ∼ xi) ∧
∧

1≤j≤n

(z 6∼ yi)
) .

So σm,n is the Alice’s restaurant property with m vertices in one group and n vertices in the other. This
notation can be extended to when m = 0 or n = 0; then σm,0 means that every set of m vertices have a
common neighbor, and σ0,n means that for every set of n vertices there is a vertex not connected to any of
them.

Now, consider the collection of statements σm,n for m,n ≥ 0. We can take these as the axioms of a theory,
which we’ll call T . This theory is complete: For every first-order statement S, either S or ¬S is provable
from the axioms σm,n.2

Proof sketch of Theorem 15. Let S be a first-order statement in the language of graph theory. If S is provable
in T , then there is a proof of S using only the axioms σm,n. Since proof is finite, this proof uses only a finite
list of the σm,n; call them σ1, . . . , σk.

What does this mean? Every finite graph that satisfies
∧

1≤i≤k σ
i will satisfy property S. Applying the

contrapositive, any graph that satisfies property ¬S will satisfy
∨

1≤i≤k ¬σi. Then

P
(
G(n, p) does not satisfy S) ≤

∑
1≤i≤k

P
(
G(n, p) does not satisfy σi)

We have
P
(
G(n, p) does not satisfy σr,s) ≤

(
n

r

)(
n− r

s

)
(1− p−r−s)n−r−s,

which tends to 0 as n → ∞. So

P
(
G(n, p) does not satisfy S) −→ 0.

So πn(S) → 1.
If S is not provable in T , then ¬S is provable (since T is complete), so πn(¬S) → 1, meaning that

πn(S) → 0.

This is a very impressive result. It’s important, however, to note what it does not say. There is no first-
order statement, for example, that says a graph has an even number of triangles. There is no first-order
statement, in fact, that says the graph is connected! One must be careful to not apply this theorem too far.

5. problems
1. Prove that the complement of R (replacing each edge by a non-edge and vice versa) is isomorphic to

R.

2 Why? This is a consequence of (1) the fact that there is only one countable graph that satisfies all the axioms and (2) Gödel’s
Completeness Theorem. For more details, see chapters 0 and 1 of Joel Spencer’s The Strange Logic of Random Graphs.
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2. Prove Propositions 11 and 12.
3. Prove Proposition 13. [Hint: Use Theorem 8 and contradiction.]
4. Find a countable subset of vertices of R whose induced subgraph is not isomorphic to R. Use this to

show that R can be partitioned into two sets where only one induced subgraph is isomorphic to R.
5. Let S be a set of positive integers. The S-circulant graph on the vertex set N has edges between i and

i+ s for every s ∈ S (and no other edges). Find a set S for which the S-circulant graph is isomorphic
to the Rado graph.

6. Construct a graph on the vertex set N by connecting vertices i and j (with i < j) if and only if the ith
bit in the binary expansion of j is nonzero. (For example, 0 is connected to all odd numbers, and 1 is
connected to any number congruent to 2 or 3 modulo 4.) Show that this graph is isomorphic to the
Rado graph.

7. A linear order on a set X is a relation � such that
◦ x � x for all x ∈ X;
◦ if x � y and y � x, then x = y;
◦ for any x, y ∈ X, either x � y or y � x (or both); and
◦ if x � y and y � z, then x � z.

A linear order is dense if for any x, y ∈ X with x � y, there is an element z ∈ X such that x � z � y.
A point x ∈ X is an maximum if y � x for every y ∈ X, and it is a minimum if x � y for every y ∈ X;
it is an endpoint if it is either a maximum or a minimum.

Suppose that (X,�1) and (Y,�2) are two dense linear orders without endpoints and that both X
and Y are countable sets. (For example, Q is a dense linear order without endpoints.) Prove that these
linear orders are isomorphic (that is, there is a bijection ϕ : X → Y such that, for every x, y ∈ X, we
have x �1 y if and only if ϕ(x) �2 ϕ(y)).3

3 What does this have to do with countable random graphs? Solve the problem to find out!
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