
Graph inequalities by magic
Travis, Mathcamp 2024

Suppose I have three graphs: F1, F2, and G. What does knowing something about the number of times
that F1 appears in G tell you about the number of times F2 appears in G? This is the central question of
this class.

Let’s start out with a specific example.

Activity: (F1 = , F2 = ) Find a graph with n vertices and as many edges as possible, but no
triangles. (Start with n = 4.)

As you may have found, it seems that a good way to make a graph with lots of edges but no triangles is
to divide the vertices into two groups and only draw the edges between the two groups. This is an bipartite
graph Ka,b:

The bipartite graph Ka,b has ab edges. If a+ b = n, then ab is maximized when a = b = n/2 (as long as n
is even), so we have found a graph with no triangles and n2/4 edges. In fact, this graph has the most edges
possible:

Theorem 1 (Mantel’s Theorem). If a graph with n vertices does not contain a triangle, then it has at most
n2/4 edges.

You’ll see a proof of Mantel’s theorem in the problems (and a different proof in tomorrow’s problems!).
Our next goal is to move to a more general framework.

Definition 2. Suppose that F and G are two graphs. A map ϕ : V (F ) → V (G) is a graph homomorphism
if ϕ(x)ϕ(y) is an edge in G whenever xy is an edge in F . The number of graph homomorphisms from F to
G is denoted by hom(F,G).

A graph homomorphism is just a way of “locating” a copy of F inside G.

Activity: Calculate
◦ hom( , )
◦ hom( ,K4)
◦ hom( , )
◦ hom(Kr,Kn)

Activity: Prove that, for every graph G,
◦ If F1 and F2 have the same set of vertices, but F1 ⊆ F2, then hom(F1, G) ≥ hom(F2, G).
◦ hom(F1 t F2, G) = hom(F1, G)hom(F2, G), where F1 t F2 is the disjoint union of F1 and F2.

Translated into homomorphism numbers, Mantel’s theorem says that if hom( , G) = 0, then hom( , G) ≤
1
4n

2. A central question of extremal graph theory is trying to determine relationships like this.
We can flip the relationship around: Perhaps we know the number of edges of G and want to find a bound

on the number of triangles G contains. In other words, can we find an upper bound for hom( , G) in terms
of hom( , G)?

Activity: Suppose that G has 10 edges; what is the maximum number of triangles it can have? What
if G has m edges?
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In the activity, it seems that the best thing you can do is push all the edges together, to make some-
thing close to a complete graph. How good is this strategy in general? Well, hom( ,Kn) = n(n − 1) and
hom( ,Kn) = n(n− 1)(n− 2). So hom( ,Kn) ≈ hom( ,Kn)

3/2. In fact, this is the best possible:

Theorem 3 (Kruskal-Katona). hom(K3, G) ≤ hom(K2, G)3/2.

To prove the theorem, we’ll need a very useful inequality:

Lemma 4 (Cauchy–Schwarz). If a1, . . . , ak and b1, . . . , bk are real numbers, then

k∑
i=1

aibi ≤

√√√√ k∑
i=1

a2i

√√√√ k∑
i=1

b2i .

The (optional) homework problems include two proofs of this inequality. For now, on to the juicy stuff!

Proof of Kruskal–Katona. Given two vertices x, y, we define

a(x, y) =

{
1 if there is an edge between x and y

0 if not.

Three vertices form a triangle in G if and only if a(x, y)a(y, z)a(z, x) = 1. Therefore, one way to write
hom( , G) is like this:

hom( , G) =
∑

x,y,z∈V (G)

a(x, y)a(y, z)a(z, x) =
∑

y,z∈V (G)

a(y, z)
( ∑

x∈V (G)

a(x, y)a(z, x)
)
.

Applying Cauchy–Schwarz to the last expression, where ai = a(y, z) and bi =
∑

x a(x, y)a(z, x), provides an
upper bound of √ ∑

y,z∈V (G)

a(y, z)2

√√√√ ∑
y,z∈V (G)

( ∑
x∈V (G)

a(x, y)a(z, x)
)2

.

Now we look at each sum under the square root. Since a(y, z) is either 1 or 0, the left sum is equal to∑
y,z∈V (G)

a(y, z),

which is simply the number of edges in G, or hom( , G). If we expand the square in the right square root,
we get ∑

y,z∈V (G)

( ∑
x∈V (G)

a(x, y)a(z, x)
)( ∑

w∈V (G)

a(w, y)a(z, w)
)
=

∑
x,y,z,w

a(x, y)a(y, w)a(w, z)a(z, x).

This is the number of copies of in G. Since ⊆ , we have

hom( , G) ≤ hom( , G) = hom( , G)2.

Now we can put everything together:

hom( , G) ≤
√

hom( , G)
√

hom( , G) ≤
√

hom( , G)
√

hom( , G)2 = hom( , G)3/2.

You might look at this proof and say

WTF?W
TF?

W
T

F?
W

TF?

WTF?
WTF? W

TF?

W
T

F?
W

TF?

WTF?

but tomorrow, we’ll translate this into a one-line proof by picture that seems easy-peasy.

Day 1 | Page 2



Graph inequalities by magic Travis, Mathcamp 2024

problems
1. Here are some interpretations of homomorphism numbers, to get even more used to them! (Think

about these problems first.)
(a) Prove that hom(Pk, G) is the number of walks of length k in G. (Pk is the path with k vertices; a

walk is a sequence of vertices that are connected by an edge.)
(b) If you paint each vertex of a graph one color, using a palette of r colors, what you get is called

an r-coloring of the graph. (You don’t have to use all r colors.) If every pair of vertices that are
connected by an edge have different colors, the r-coloring is called proper. Prove that hom(G,Kr)
is the number of proper r-colorings of G.

(c) The complement of G is a new graph G with the same set of vertices. There is an edge between
two vertices in G if and only if there is not an edge between those two vertices in G. For example,
these two graphs are complements: and . A set of vertices is called independent if there is
no edge between any pair of vertices in the set. Prove that hom(Kr, G) is the number of (ordered)
independent sets of size r in G.

(d) The star graph Sk has a single vertex connected to k other vertices. The graph S3 looks like this:

Prove that
hom(Sk, G) =

∑
x∈V (G)

deg(x)k.

The rest of these problems are just for fun. They’re related to the material in the class, but they won’t
be used in class tomorrow. Think about any that you find interesting!

2. Let’s prove Mantel’s theorem!
(a) Suppose that G is a graph with n vertices that contains no triangle, and let x, y be two vertices

in G that are connected by an edge. Prove that there are at most n − 1 edges that connect to
either x or y.

(b) Prove Mantel’s theorem by induction.
(c) (Challenge) There is a strengthening of Mantel’s theorem, called Turán’s theorem, which says that

any graph with n vertices that does not contain a copy of Kr+1 has at most (1 − 1
r )

n2

2 edges.
Prove Turán’s theorem by induction.

3. If you’ve never seen a proof of the Cauchy–Schwarz inequality and would like to, here is an inductive
proof.
(a) Prove the inequality for k = 2, that is: (a1b1 + a2b2)

2 ≤ (a21 + a22) + (b21 + b22).
(b) Assume the inequality is true for some k, and prove that the inequality is true for k + 1.

[Hint: How can you apply the inductive hypothesis to the sum
∑k

i=1 aibi?]
4. Here is another proof of Cauchy–Schwarz, this time without induction!

(a) Prove that
∑k

i=1 aibi ≤
1
2

∑k
i=1 a

2
i +

1
2

∑k
i=1 b

2
i .

(b) Suppose we know that
∑k

i=1 a
2
i = 1 and

∑k
i=1 b

2
i = 1. Prove the Cauchy–Schwarz inequality in

this case.
(c) Now prove the Cauchy–Schwarz inequality without the restriction in part (b).

5. (Challenge; not related to class except it’s a fun problem about homomorphisms.) Let G be a directed
graph, −→P n denote the directed path on n nodes, and −→

Kn denote the transitive tournament on [n] :=

{1, 2, . . . , n} where (i, j) ∈ E(
−→
Kn) if and only if i < j. Prove that G has a homomorphism into −→

Kn if
and only if −→P n+1 has no homomorphism into G.
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Let’s go over that proof of Kruskal–Katona again. Remember, we’re trying to prove that hom( , G)2 ≤
hom( , G)3 for every graph G. One way we can rewrite the first step is

hom( , G) =
∑
x,y,z

x

z

y =
∑
y,z

z

y y
x

z
.

In the last sum, we think of “gluing together” the filled-in vertices that appear twice. The open vertex
indicates that we’re hiding a sum over x.

When we take the square and apply Cauchy–Schwarz, we get

hom( , G)2 ≤
(∑

y,z

( z

y

)2
) (∑

y,z

(
y

x
z )2

)
.

Now, look at both of the sums. For the first,∑
y,z

( z

y

)2

=
∑
y,z

( z

y

z

y

)
=

∑
y,z

z

y = hom( , G)

by “gluing together” the corresponding vertices. For the second,

∑
y,z

(
y

x
z )2

=
∑
y,z

(
y

w
z

y
x

z )
=

∑
y,z

z

y

xw = hom( , G).

The last step of the proof is that hom( , G) ≤ hom( , G).
If remove all the sums and simplify to just the pictures, the entire proof looks like this:

2
=

( )2

≤
( 2)( 2)

= ≤

Your initial reaction to this might also be

WTF?W
TF?

W
T

F?
W

TF?

WTF?
WTF? W

TF?

W
T

F?
W

TF?

WTF?

but this way of looking at things has a lot of benefits. The main one is that it emphasizes where the
action is: The proof comes down to the two ingredients of Cauchy–Schwarz and the inequality hom( , G) ≤
hom( , G). And because of this, it makes the proof of Kruskal–Katona, which at first seems strange, into a
technique that you can unleash anywhere.

Cauchy–Schwarz for graph inequalities: Take a graph F and “split” it into two parts F1 and F2

that glue together into F . Let F 2
1 be the graph you get when you glue two copies of F1 together, and

F 2
2 similarly. Then

hom(F,G)2 ≤ hom(F 2
1 , G)hom(F 2

2 , G)

for every graph G.

Here’s a more precise way to set things up.
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Definition 5. A k-labelled graph is a graph (which might have more than k vertices) where each of the
elements of {1, 2, . . . , k} is assigned to a distinct vertex. If F1 and F2 are two k-labelled graphs, the gluing
product of F1 and F2 is the graph obtained by identifying vertices with the same labels in the disjoint union
of F1 and F2.

For example, here is the gluing product of two 2-labelled graphs:
1

2

1

2

=

1

2

Activity: Cn is the cycle graph with n vertices. Prove that

hom(C6, G)2 ≤ hom(C4, G)hom(C8, G)

for every graph G. Use pictures. How would this proof look if you wrote it out using sums?

Activity: Prove that hom( , G)2 ≤ n hom( , G).

problems
1. Here is a different proof of Mantel’s theorem which uses Cauchy–Schwarz. Suppose that G is a graph

with n vertices and m edges, and x, y are vertices in G that are connected by an edge.
(a) If you didn’t yesterday, prove that deg(x) + deg(y) ≤ n.
(b) Prove that ∑

xy∈E(G)

(
deg(x) + deg(y)

)
≤ nm.

(c) Prove that ∑
x∈V (G)

deg(x) = 2m and
∑

x∈V (G)

deg(x)2 ≤ nm.

(d) Use Cauchy–Schwarz to prove that ( ∑
x∈V (G)

deg(x)
)2

≤ n2m,

and use this to prove Mantel’s theorem.
2. Convert the previous proof into a proof by picture.
3. (a) Prove that hom( , G)4 ≤ n4hom( , G).

(b) Prove that hom( , G)7 ≤ n8hom( , G).
(c) Let Q3 be the “cube graph” with 8 vertices and 12 edges. Show that hom( , G)12 ≤ n16 hom(Q3, G).

Another way to set things up is to use homomorphism density, which is the fraction of maps V (F ) → V (G)
that are valid homomorphisms. If G has n vertices and F and k vertices, the homomorphism density of F
in G is

t(F,G) :=
hom(F,G)

nk
.

Translated to homomorphism densities, the problem 3 says that t( , G)4 ≤ t( , G) and t( , G)7 ≤ thom( , G)
and t( , G)12 ≤ t(Q3, G).

A graph F with e edges is called Sidorenko if hom(F,G) ≥ t( , G)e for every graph G. So every graph in
problem 3 is Sidorenko. However, some graphs are not Sidorenko:

4. (a) Prove that is not Sidorenko.
[Hint: Find a particular graph G for which the Sidorenko inequality fails.]

(b) Prove that every Sidorenko graph is bipartite.
[Hint: Suppose that F is not bipartite. Why can’t F be Sidorenko?]
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