
Ghostly graph theory
Travis, Mathcamp 2024

For this entire class, G is a connected graph with n vertices.

1. adjacency matrices and walks

1.1. a humble beginning
Definition. A walk of length k is a sequence of vertices x0, x1, . . . , xk in G such that xi+1 is adjacent to xi.
(The vertices do not have to be distinct.) A walk is called closed if xk = x0.

Problem 1. How many walks of length k does K4 have? What about Kn?

Here is a harder question: How many closed walks of length k does Kn have? Or more generally:

Question. Given a graph G, how can we find the number of closed walks of length k? (For every k.)

This is the question we’ll answer today, and we’ll use linear algebra to do it.

Definition. The adjacency matrix of G is the n× n matrix A whose entries are

Ai,j =

{
1 if i and j are connected
0 if they are not.

Here is an example graph and its adjacency matrix:

1

2

3

4


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0


The adjacency matrix is just another way to think about the information a graph contains, but a table of

numbers is harder to understand than a picture. But the whole point of this class is that thinking of it as a
matrix, not just a table of numbers, will be super, super useful.

Problem 2.
(a) Prove that (Ak)i,j , the (i, j) entry of A ·A · · ·A︸ ︷︷ ︸

k

, is the number of walks of length k that start at i and

end at j.
(b) Prove that tr(Ak) is the number of closed walks of length k in G. (Remember that tr(M) is the sum

of the diagonal entries of M .)

Aha! So we need to think about the trace of a matrix. Let’s collect some linear algebra.

1.2. gathering some tools

For this entire class, M is an n× n matrix.

Definition. A vector v 6= 0 is an eigenvector of M if there is a real number λ such that Mv = λ · v, in
which case λ is called the eigenvalue associated with M .

It is possible that some of the eigenvalues are complex numbers. (For example, the matrix
(
0 −1
1 0

)
has

complex eigenvalues.)
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Problem 3. (Basic properties of eigenvectors)
(a) If v1 and v2 are eigenvectors with eigenvalue λ, then av1 + bv2 is an eigenvector with eigenvalue λ, for

any a, b ∈ R.
(b) If v1, v2, . . . , vk are eigenvectors and each has a different eigenvalue, then these vectors are linearly

independent. [Hint: Suppose there were a linear dependence, and apply A to it.]
(c) M has at most n different eigenvalues.

This is (part 1 of) the Big Theorem we will reference throughout the entire class.

Theorem (Spectral theorem, part 1). If M is a symmetric matrix, then there is a basis v1, . . . , vn
of Rn where each vi is an eigenvector of M . (This is called an eigenbasis of M .) Every eigenvalue
associated to these vectors is a real number, and the (multi)set of n eigenvalues is called the spectrumspectrumspectrumspectrumspectrumspectrumspectrumspectrumspectrumspectrumspectrumspectrumspectrumspectrumspectrumspectrumspectrum
of M .

Here is a very useful fact about the trace:

Theorem. tr(M) =
∑n

i=1 λi.

If you want to prove this, there’s a set of problems that goes through a proof at the end of this handout.

Definition. The quantity
ρ(M) = max

1≤i≤n
|λi|

is called the spectral radius of M .

1.3. back to graphs

Unless otherwise noted, A is always the adjacency matrix of G.

The adjacency matrix of any graph is symmetric. (Why is that true?) So it has an eigenbasis! This will
be very useful.

Problem 4. Find 3 linearly independent eigenvectors of the adjacency matrix for K3. What are their
eigenvalues?

Problem 5. Suppose that v1, . . . , vn are an eigenbasis for A with eigenvalues λ1, . . . , λn. Let wG(k) denote
the number of closed walks of length k in G. Prove that

wG(k)

ρ(A)k
−→ 1

as k → ∞.

This answers our question very nicely! The number of closed walks of length k in any graph G is approx-
imately ρ(G)k, and ρ(G) is something that you can get a computer to calculate fairly quickly.1

2. miscellaneous facts
This is just the beginning of the connections between linear algebra properties of A and graph theory
properties of G. Here are lots more!

To simplify things, we’ll always assume that the eigenvalues are sorted so that

λ1 ≤ λ2 ≤ · · · ≤ λn

1 If you want to know how computers can calculate this, ask me at tau.
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and we’ll write ρ(G) sometimes instead of ρ(A).

Problem 6. The maximum degree of G, denoted ∆(G), is the largest number of edges connected to any
single vertex. Prove that ρ(G) ≤ ∆(G). [Hint: If Av = λv, how big can λ be?]

Problem 7. Prove that isomorphic graphs have the same spectrum.

Problem 8. A graph is d-regular if every vertex has degree d.
(a) Suppose that G is d-regular. Prove that λn = d. [Hint: Can you find an explicit eigenvector?]
(b) Suppose that λn = ∆(G) and G is connected. Prove that G is ∆(G)-regular.

Problem 9. Prove that a d-regular graph is bipartite if and only if λ1 = −d.

bonus: more miscellanea
Problem 10. A multiset is symmetric if λ appears the same number of times as −λ. Prove that G is
bipartite if and only if the spectrum of G is symmetric.

Problem 11. If two graphs have the same spectrum, are they isomorphic?
(a) The star graph Sn consists of a single vertex connected to n other vertices (and no other edges). Find

a basis of eigenvectors for the adjacency matrix of S4.
(b) Find a basis of eigenvectors for the adjacency matrix of C4 (the cycle with 4 vertices).
(c) Suppose that G consists of two connected components G1 and G2. Prove that the spectrum of G is

the union of the spectrum of G1 and the spectrum of G2.
(d) Use the previous problems to find a pair of graphs that are not isomorphic but have the same spectrum.

Problem 12. The complement of G is the graph G, which has the same vertices as G, but uv is an edge in
G if and only if uv is not an edge in G. Suppose that G is d-regular. What is the spectrum of G in terms
of the spectrum of G?

bonus: trace and eigenvalues
Problem 13.

(a) Prove that v is an eigenvector of M with eigenvalue λ if and only if v is an eigenvector of the matrix
λI −M with eigenvalue 0.

(b) Prove that λ is an eigenvalue of M if and only if the rows of λI −M are linearly dependent.

Since det(M) = 0 if and only if the rows of M are linearly dependent,2 we can conclude that

Theorem. λ is an eigenvalue of M if and only if det(λI −M) = 0.

If you consider t as a variable and expand out the determinant of tI−M , you get a polynomial of degree t,
called the characteristic polynomial of M , denoted χM (t). The roots of this polynomial are the eigenvalues
of M .

Problem 14.
(a) Show that the coefficient of tn in χM (t) is 1.
(b) Show that the coefficient of tn−1 in χM (t) is tr(M).
(c) Show that the constant term of χM (t) is (−1)n det(M).

Problem 15. If M has an eigenbasis, then we know that χM (t) has roots λ1, . . . , λn. So in fact, χM (t) =
(t− λ1)(t− λ2) · · · (t− λn). Prove that det(M) =

∏n
i=1 λi and tr(M) =

∑n
i=1 λi.

2 If you haven’t seen this before, we can talk at tau!
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3. diameter
Definition. The length of the smallest walk from x to y is called the distance from x to y and is denoted
d(x, y). The maximum distance between any pair of vertices is called the diameter of the graph, denoted
diam(G).

Today, we’ll see what the adjacency matrix can tell us about the diameter of a graph.

Problem 1. Prove that d(x, y) ≤ d(x, z) + d(z, y) for every triple of vertices x, y, z.

Definition. The set of all vertices whose distance from x is at most k is called the ball of radius k centered
at x; the notation for this is Bx(k).

Problem 2. Let ∆ be the degree of G (that is, the maximum degree among all vertices in G). Find an
upper bound on the size of Bx(k) that depends only on k and ∆.

Problem 3. Prove that there is a constant c such that

diam(G) ≥ c log∆(n).

This makes some sense: If every vertex has small degree and the diameter is small, then there cannot be
very many vertices.

Today, we’ll use the adjacency matrix to find an upper bound on the diameter. Since ρ(G) = d for any
d-regular graph, let’s define

ρ̃ = max
1≤i≤n−1

|λi|.

Theorem. If G is a d-regular graph, then

diam(G) ≤ log(n)
log(d/ρ̃)

.

Remember that the dot product of two vectors u and v is defined by

u · v = u(1)v(1) + u(2)v(2) + · · ·+ u(n)v(n),

where u(i) is the ith coordinate of u.
To prove today’s theorem, we’ll need a stronger version of the spectral theorem:

Theorem (Spectral theorem, part 2). If M is a symmetric matrix, then all of its eigenvalues are
real numbers and it has an orthonormal eigenbasis. This means there are is a set of eigenvectors
v1, v2, . . . , vn that
◦ is a basis for Rn, where
◦ vi · vi = 1 (the length of each vector is 1), and
◦ vi · vj = 0 if i 6= j (the vectors are orthogonal).

We won’t prove the spectral theorem, but we’ll use it a whole lot.

For the rest of today, assume G is a connected d-regular graph, and let v1, . . . , vn be an orthonormal
eigenbasis of A, ordered so that the associated eigenvalues are increasing:

λ1 ≤ λ2 ≤ · · · ≤ λn = d.

Day 2 | Page 4



Ghostly graph theory Travis, Mathcamp 2024

Problem 4. Take v1, . . . , vn as an orthonormal eigenbasis of A. What is vn? (You can determine it (almost)
exactly!)

Let ex denote the vector that has entries

ex(i) =

{
1 if i = x

0 otherwise.

Since v1, . . . , vn is a basis of Rn, there is a unique linear combination ex =
∑n

i=1 αivi.

Problem 5.
(a) Find the values of αn.
(b) What is

∑n
i=1 α

2
i ?

Problem 6. Prove: that d(x, y) = min
{
k : ex · (Akey) > 0

}
.

Problem 7. Prove today’s main theorem. [Hint: How can you rewrite ex · (Akey)? How can you guarantee
this expression is positive?]

But there’s a problem: What if ρ̃ = d? Then the main theorem says that diam(G) ≤ log(n)/ log(d/d) . . . which
isn’t a useful bound, oops.3

Problem 8. Suppose that G is a d-regular graph.
(a) Prove that the multiplicity of d as an eigenvalue of A is equal to the number of connected components

of G.
(b) Suppose that G is bipartite. Prove that the multiplicity of −d as an eigenvalue of A is equal to the

number of connected components of G.

So if G is connected, then λn−1 < d. But it still may be the case that ρ̃ = d: maybe λ1 = −d. We know
that λ1 = −d if and only if G is bipartite. Fortunately, for bipartite graphs there is a special theorem. If G
is a bipartite graph, define

µ(G) = max
2≤i≤n−1

|λi|.

Theorem. If G is a connected d-regular bipartite graph, then

diam(G) ≤ log(n/2)
log(d/µ)

+ 1.

Problem 9. Prove this theorem by modifying your previous proof.

If G is connected and bipartite, then µ(G) < d, so this theorem gives a meaningful bound.

3 Don’t worry, there are staff supervising this class.
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Today we have two more applications of linear algebra to graph theory.

4. mixing it up

Again, G is a d-regular graph. As usual, assume that v1, . . . , vn is an orthonormal eigenbasis for A,
and λ1 ≤ · · · ≤ λn.

Problem 1. Given a subset X ⊆ V (G), define eX ∈ Rn by

eX(i) =

{
1 if i ∈ X

0 otherwise.

Given X,Y ⊆ V (G), suppose that eX =
∑n

i=1 αivi and eY =
∑n

i=1 βivi.
(a) What is αn?
(b) What is

∑n
i=1 α

2
i ?

(c) Express eX · eY in terms of αi and βi. What does it mean combinatorially?

Definition. Given two vertex subsets X,Y ∈ V (G), the number of edges from X to Y is

e(X,Y ) =
∣∣∣{(x, y) ∈ X × Y : xy ∈ E(G)

}∣∣∣.
(Important! If x, y ∈ X ∩ Y , then the edge xy is counted twice: once as (x, y) and once as (y, x).)

Problem 2. Suppose we had a set of vertices X and we built a graph as follows: for each vertex x ∈ X,
choose d vertices independently at random in G, and connect x to each of them. (Multiple edges is okay.)
Given another set Y ⊆ V (G), what is the expected value of e(X,Y )?

The next theorem says that if the spectral radius is small, G mimics this random behavior:

Theorem (Expander mixing lemma). For every X,Y ⊆ V (G),∣∣∣∣e(X,Y )− d|X||Y |
n

∣∣∣∣ ≤ ρ̃
√

|X||Y |.

Problem 3. Prove the theorem.

Problem 4. A set X ⊆ V (G) is called independent if there is no edge between any pair of vertices in X.
Prove that every independent set has size at most ρ̃n/d.

Problem 5. The chromatic number of a graph G is the minimum number of colors you need so that you
can give each vertex a color in a way where no edge connects vertices of the same color. Prove that the
chromatic number of G is at least d/ρ̃.

5. walking it off

In this section, do not assume that G is d-regular.

Problem 6. Prove that the number of walks of length k in G is at most nλk
n.

Problem 7. Let M be any symmetric matrix. Prove that
ρ(M) = max

{
v · (Mv) : v · v = 1

}
.

(This is purely linear algebra.)
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Now assume that G is a d-regular graph.

Problem 8. Let X ⊆ V (G) and let γ = |X|/n. Suppose that v ∈ Rn satisfies the property that v(i) = 0 if
i ∈ X and ‖v‖ = 1, and decompose v according to the eigenbasis as v =

∑n
i=1 αivi.

(a) Prove that α2
n ≤ 1− γ. [Hint: Express αn as an inner product and use Cauchy-Schwarz.]

(b) Prove that v · (Av) ≤ (1− γ)d+ γρ̃.

Problem 9. Prove that the number of walks of length k in a d-regular graph G that do not contain any
vertex in X is at most

(1− γ)
(
(1− γ)d+ γρ̃

)k
n.

This means that

Theorem. The probability that a random walk of length k in a d-regular graph G completely avoids X

is at most (1− γ)
(
1− γ(1− ρ̃

d )
)k.

Problem 10. Prove that theorem.
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6. graph drawing

In this section, G is not necessarily d-regular.

Here is one of the coolest applications I know of spectral graph theory. The main question of this section
is to figure out how to draw graphs in a way that makes sense.

Question. Given a very large graph G, how can we (or a computer) determine an informative way to
draw it?

We’ll think about this physically: Nature tends to optimize things that we don’t know how to do, so imagine
replacing each edge of the graph with a spring. The further the two endpoints of the edge are stretched
apart, the more energy it takes to hold the endpoints in place. Specifically, the energy is proportional to
the square of the distance between the endpoints. So if vertex i is at position ξ(i), then the energy of a
configuration is

E(ξ) =
∑

ij∈E(G)

‖ξ(i)− ξ(j)‖2,

and a “stable configuration” is one that minimizes this quantity.
Trying to draw graphs in the plane will be a bit hard, so let’s try drawing them on the plane first.

6.1. graph drawing on a line
We want to find a map ξ : V (G) → R that minimizes E(ξ).

This is a good idea, but the configuration that minimizes the energy is the map ξ : V (G) → R defined by
ξ(i) = 0 for every i. :(

But that’s a silly solution. So perhaps what we want to do is demand that ‖ξ‖ = 1.

Problem 1. Find a map ξ : V (G) → R2 such that ‖ξ‖ = 1 and E(ξ) = 0.

:( :( :(. Oh! But we forgot to say that the center of mass of the points should be at the origin, which we
can write as ξ · 1 = 0. Then ‖ξ‖ = 1 really corresponds to fixing a scaling factor of the drawing. So here is
our actual minimization problem:

min
‖ξ‖=1
ξ·1=0

∑
ij∈E(G)

|ξ(i)− ξ(j)|2.

It turns out to optimize this, we’ll need to use a different matrix associated to G.

Definition. The Laplacian of a graph G is an n× n matrix with entries

Li,j =


deg(i) if i = j

−1 if i 6= j and ij ∈ E(G)

0 otherwise.

Since L is symmetric, it also has an orthonormal eigenbasis.

As usual, we let v1, . . . , vn be an orthonormal eigenbasis of A with eigenvalues λ1 ≤ · · · ≤ λn. We also
let u1, . . . , un be an orthonormal eigenbasis of L with eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn.

Problem 2. Suppose in this problem that G is d-regular. How do the µi relate to the λi?
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Problem 3. Prove that
x · (Lx) =

∑
ij∈E(G)

|x(i)− x(j)|2

for every vector x ∈ Rn.
Problem 4.

(a) Prove that every eigenvalue of L is nonnegative (even when G is not d-regular).
(b) What is u1? What is µ1? (Unlike the adjacency matrix, this is true even for non-regular graphs!)

Problem 5. What configuration ξ solves the minimization problem?

6.2. back to the plane
Given a function ξ : V (G) → R2, let R denote the n× 2 matrix whose ith row is ξ(i). If we define

ξ(i) =
(
x(i), y(i)

)
,

then the first column of R is the vector x and the second column is the vector y.

Problem 6. Prove that
tr(R>LR) =

∑
ij∈E(G)

∥∥ξ(i)− ξ(j)
∥∥2

To get a good graph drawing in 2 dimensions, we want to minimize E(ξ) subject to the constraints
◦ x · 1 = 0 and y · 1 = 0, which implies that the centroid of the vertices is the origin; and
◦ ‖x‖ = 1 and ‖y‖ = 1, which prevents you from changing the energy just by scaling the picture.

But this isn’t enough for a good drawing:

Problem 7. Find the configuration ξ : V (G) → R2 that satisfies these constraints and minimizes E(ξ).

The problem is that the drawing you get from this configuration isn’t really 2-dimensional—for this choice
of ξ, all the vertices of G lie on a line! We can measure how 2-dimensional a configuration is by taking the
dot product x · y. If |x · y| is close to 1, then the points

(
x(i), y(i)

)
are close to lying on the same line. (In

statistics, this is called the covariance.) So to make it really a drawing in the plane, we will add the condition
that x · y = 0.

Problem 8 (Linear algebra lemma). Since L is symmetric, the matrix R>LR is also symmetric. So it has
two real eigenvalues σ1 ≤ σ2. The point of this problem is to show that

σ2 ≥ µ3 and σ1 ≥ µ2.

(I recommend assuming this result and coming back to this problem if you have time.)
(a) Suppose that x · y = 0 and x · 1 = y · 1 = 0. Show that

{Ru : u ∈ R2}

is a subspace of dimension 2 that is orthogonal to the vector 1.
(b) Show that ‖Ru‖ = ‖u‖.
(c) Prove that there is a vector u ∈ R2 such that Ru ∈ span(u3, u4, . . . , un).
(d) Why does this mean that R>LR has an eigenvector with eigenvalue at least µ3?
(e) Prove that the other eigenvector of R>LR has eigenvalue at least µ2.

Problem 9. Find a configuration ξ : V (G) → R2 that minimizes E(ξ) among all those configurations that
satisfy
◦ x · 1 = y · 1 = 0 and
◦ ‖x‖ = ‖y‖ = 1 and
◦ x · y = 0.

Problem 10. What if you wanted to visualize a graph in 3 dimensions? What extra conditions would you
need to add? What is the minimizing configuration?
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bonus: efficient random search algorithms
Using the last theorem from Day 3, we can make a more efficient random search algorithm!

Suppose that you have a set S of n elements and you want to find an element in a subset X ⊆ S of size
|X| = cn (for 0 < c < 1). But you don’t know where the elements of X are; all you can do is test whether
a given element of S is contained in X. So a reasonable strategy to find an element of X is to keep picking
random elements of S.

Problem 11. To pick a random element of S, you need log(n) random bits. (Why?) If you pick a random
element of S independently k times, how many random bits do you need? What is the probability that you
find an element of X?

But random bits are hard to come by, and it would be nice if we could use fewer. It seems there’s no hope
to do better, but there is! Imagine that we can define a d-regular graph G whose vertex set is S. (Which
there are algorithms for, though we won’t talk about them.)

Problem 12. How many bits do you need to define a random walk of length k on the graph? What is the
probability that the random walk visits a vertex in X?

Problem 13. Compare these two results.

bonus: diameter for non-regular graphs
This has nothing to do with anything else on today’s sheets.

Problem 14. In this problem, don’t assume that G is regular.
(a) If p(t) is a polynomial, say p(t) = a0 + a1t+ · · ·+ akt

k, then we can evaluate p “at the matrix A” by
writing p(A) = a0 + a1A + · · · + akA

k. Prove that there is no polynomial of degree ≤ diam(G) such
that p(A) = 0.4

(b) Suppose that A has exactly k distinct eigenvalues. Find a polynomial p of degree k such that p(A) = 0.

This proves:

Theorem. If G is any connected graph with exactly k distinct eigenvalues, then diam(G) ≤ k − 1.

4 0 is the n× n matrix where every entry is 0.
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Today, G is a connected d-regular graph.

7. eigenvalues and graph limits

7.1. graph limits
Definition. A rooted graph is just a graph in which one vertex is marked as the root. If G is a rooted
graph, Bk(G) is the ball of radius k centered at the root of G.

Today, every graph is rooted and connected.
Also, graphs are allowed to have infinitely many vertices.

Using this, we can define a distance between two rooted graphs.

Definition. Suppose that G1 and G2 are two rooted graphs, and k is the maximal integer such that
Bk(G1) = Bk(G2). The rooted distance between G1 and G2 is δ(G1, G2) = 1/k. (If there is no largest
integer, then δ(G1, G2) = 0.)

This is a metric:

Problem 1. Prove that
δ(G1, G2) ≤ max

{
δ(G1, G3), δ(G3, G2)

}
.

for every triple of rooted graphs G1, G2, G3. (This is stronger than the usual triangle inequality.)

We can use this notion of rooted balls to define graph convergence.

Definition. We say that a sequence of rooted graphs G1, G2, G3, . . . converges to a graph G if δ(Gn, G) → 0
as n → ∞.

Problem 2. Suppose that G1, G2, G3, . . . is a sequence of rooted graphs. Prove that there is a subsequence
Gni

such that for every j ≥ i ≥ k,
Bk(Gni

) = Bk(Gnj
).

(In other words, the ball of radius k is the same in every Gni
with i ≥ k.)

Problem 3. Prove that every sequence of graphs has a convergent subsequence. (Remember that graphs
are allowed to be countably infinite.)

7.2. walks, yet again
Definition. Given a vertex u ∈ V (G), we let wu(2k) denote the number of closed walks of length 2k
that begin and end at u. If we need to specify the graph, we write wG

u (2k). We also define $u(G) =
limk→∞ wG

u (2k)
1/2k.

Problem 4. Prove that $u(G) = $v(G) for every u, v ∈ V (G), even if G is infinite. (So from now on, we’ll
just write $(G).)

Problem 5. Suppose that G is a finite graph. Show that for every k and every vertex u,

wG
u (2k) ≤

n− 1

n
ρ̃2k +

d2k

n
.
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Problem 6. Suppose that G1, G2, G3, . . . is a sequence of graphs that converges to an infinite graph G.
Prove that

lim inf
n→∞

ρ̃(Gn) ≥ $(G).

(If you haven’t seen “lim inf” before, this is just a way to get around the fact that the sequence ρ̃(Gn) may
not be convergent. You can just assume that the sequence ρ̃(Gn) is convergent.)

7.3. a big theorem

Theorem. If G1, G2, G3, . . . is any sequence of connected d-regular graphs such that |V (Gn)| → ∞,
then

lim inf
n→∞

ρ̃(Gn) ≥ 2
√
d− 1.

Definition. The infinite d-ary tree Td is the connected graph with countably many vertices and no cycles
where every vertex has degree d.

For example, a small portion of the 3-ary tree looks like this:

Problem 7. Prove that wG
u (2k) ≥ wTd

v (2k) for any u ∈ V (G) and v ∈ V (Td).

Here is a useful fact:

Proposition. $(Td) = 2
√
d− 1.

That’s all you need!

Problem 8. Prove the theorem.

Here is another way to state the theorem:

Theorem. For every ε > 0, there is an N ∈ N such that every d-regular graph with at least N vertices
has spectral radius ρ̃ ≥ 2

√
d− 1− ε.

In other words, any d-regular graph with many, many vertices must have a somewhat large spectral radius.
Or, as another way to think about it: For every ρ̃ < 2

√
d− 1, there are only finitely many d-regular graphs

whose spectral radius is at most ρ̃.
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bonus: walks in the d-ary tree
These problems prove that

$(Td) ≥ 2
√
d− 1,

which is the inequality you need to prove the big theorem in the previous section.

Definition. The kth Catalan number
�������k the number of sequences of length 2k consisting of k + symbols

and k − symbols such that: For every i, the first i symbols contain at least as many +’s as −’s. (For
example, ++−+−− is an allowable sequence, but +−−+−+ is not.)

Problem 9. Prove that wTd
u (2k) ≥ (d− 1)k

�������k.

The asymptotic notation f(n) ∼ g(n) means that f(n)/g(n) → 1 as n → ∞. (In other words, f and g
grow at the same rate.)

Theorem.
�������k = 1

2k+1

(
2k
k

)
.

Theorem.
(
2k
k

)
∼ 4k√

πk
.

If you want to know where these formulas come from, look up Catalan numbers and Stirling’s approximation
on Wikipedia.

Problem 10. Prove that $(Td) ≥ 2
√
d− 1.
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Ghostly graph theory summary
Travis, Mathcamp 2024

Over the course of this class, you’ve proved a lot about graphs using linear algebra! Here are some of the
highlights. For reference, ρ(G) = max1≤i≤n|λi| and

ρ̃(G) = min
1≤i≤n−1

|λi|.

Theorem. If G is a connected d-regular non-bipartite graph, then
wG(k)

ρ(G)k
−→ 1.

Theorem. If G is a d-regular graph, then

diam(G) ≤ log(n)
log(d/ρ̃)

.

Theorem. The chromatic number of a d-regular graph is at least d/ρ̃.

Algorithm. To plot a graph in a pleasing way, take the two eigenvectors u2, u3 of the Laplacian
matrix and use them as coordinates for the vertices.

Theorem. If G1, G2, G3, . . . is any sequence of connected d-regular graphs such that |V (Gn)| → ∞,
then

lim inf
n→∞

ρ̃(Gn) ≥ 2
√
d− 1.
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