
Diophantine approximation
day one

1. rational approximation
How do you approximate an irrational number? One way is to truncate the decimal approximation:

π = 3.14159265 · · ·

From a storage perspective, this isn’t very efficient. We need 8 digits to store this approximation. As a
fraction, this is

π = 3 +
14159265

100000000
.

We can do nearly as well with a much smaller fraction:
355

113
= 3.14159292 · · · ≈ π.

This is a much more concise approximation!
So we will refine our question: How well can we approximate an irrational number α using rational numbers

with small denominator? Here’s one observation: For every q ∈ N, you can pick p ∈ N so that p/q is the
closest fraction to α and guarantee that ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q
.

But this isn’t such a good approximation; this is the same level of efficiency as rounding a decimal expression.
The first result is that we can do much better!

Theorem 1 (Dirichlet’s theorem). Let α be a positive irrational number. For every N > 0, there is a pair
of nonnegative integers p, q ∈ N with q ≤ N so that |qα− p| < 1/N .

What does this mean? If we divide both sides by q, we get∣∣∣∣α− p

q

∣∣∣∣ < 1

Nq
<

1

q2
,

which is much better than 1
q .

Proposition 2. If α is a positive irrational number, there are infinitely many pairs of nonnegative integers
p, q ∈ N so that |α− p/q| < 1/q2.
Proof . Suppose that every pair has |α− p/q| > ε. Choose N ∈ N so that 1/N < ε. Dirichlet’s theorem says
that there are p′, q′ ≤ N so that |α − p′/q′| < 1/Nq′ < ε, which means that p′, q′ were not on the list. (So
the list cannot have only finitely many pairs.)

This is good news! It means that we have an infinite supply of pretty good rational approximations.

Definition 3. A fraction p/q is a Diophantine approximation for α if |α− p/q| < 1/q2.

But before we get ahead of ourselves, let’s prove the theorem. To do that, we’ll use a new function.

Definition 4. The fractional part of a real number x is JxK = x − bxc, the difference between x and the
largest integer less than it. (Or, if you prefer, the remainder of x modulo 1.) In other words, JxK is what
you get by deleting everything to the left of the decimal point.

Proof of Theorem 1. Divide the interval [0, 1) into N intervals of equal length [0, 1/N), [1/N, 2/N), . . . ,
[1 − 1/N, 1). If JqαK < 1/N or JqαK > (N − 1)/N , then there is an integer p for which |qα − p| < 1/N , so
we will focus on proving the first goal. For each q ∈ {0, 1, . . . , N − 1}, let xq = JqαK. If there is some q for
which xq ∈ [0, 1/N), then we’re done. Otherwise, there are two values q, q′ for which xq and xq′ are in the
same interval. If q < q′, then either xq′−q is either in [0, 1/N) or [1−1/N, 1). In either case, there is a p ∈ N
so that |qα− p| < 1/N .
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To make things more concise, we’ll use the “circle metric” to measure distance in [0, 1) when we’re thinking
modulo 1. If x, y ∈ [0, 1), their circle distance is

|x− y|◦ = min
{
|x− y|, |y − x|

}
.

This is how far you need to travel around the circle to get from x to y (or vice versa).
We can use Dirichlet’s theorem to prove that the multiples of an irrational number are dense in [0, 1).

Proposition 5. Let α be an irrational number. Prove that for every β ∈ [0, 1) and ε > 0, there is a positive
integer n so that |β − JnαK|◦ < ε.
Proof . Choose a fraction p/q so that p and q are coprime, |α − p/q| < 1/q2, and 1/q < ε/2. There is a
number 1 ≤ n ≤ q so that |β − Jnp/qK| < 1/q. Then

|β − JnαK|◦ ≤
∣∣∣∣β −

rnp
q

z∣∣∣∣
◦
+

∣∣∣∣rnpq z
− nα

∣∣∣∣
◦
<

1

q
+

n

q2
< ε.

Exercise 4 is a strengthening of this result: Not only does the sequence JnαK get arbitrarily close to every
number in [0, 1), it also is “equally spaced” in some precise sense.

We can also strengthen Dirichlet’s theorem itself:

Theorem 6 (Simultaneous Diophantine approximation). Suppose that α1, . . . , αn are irrational numbers.
There are infinitely many positive numbers q ∈ N so that for each 1 ≤ i ≤ n there is a positive integer pi
with |αi − pi/q| < 1

q1+1/n .

2. a puzzle
Question. Suppose that a rectangle can be partitioned into finitely many squares. Is it necessarily true
that the ratio of the side lengths of the rectangle is rational?

Since any rational rectangle can be easily partitioned into squares, the question is whether the converse is
true. One way to prove that the converse is in fact true is to use linear algebra and the axiom of choice ��.
(Talk to me if you want to see how it works!) A different way is to use Dirichlet’s theorem.

Theorem 7. If a rectangle can be partitioned into finitely many squares, then the ratio of the side lengths
of the rectangle is rational.
Proof . Suppose that the rectangle R is divided into squares, and let (x1, y1), . . . , (xn, yn) be the vertices of
these squares. By Theorem 6, there are infinitely many positive numbers q such that

|qxi − pi| <
1

q1/n
and |qxi − p′i| <

1

q1/n

for some integers p1, . . . , pn, p′1, . . . , p′n. Choose a value of q large enough so that 1/q1/n < 1/100 and so that
the side length of each square is at least 1. Draw the vertical and horizontal lines x = 1

2 + a and y = 1
2 + b

for every a, b ∈ Z; let V and H be the total lengths of the vertical and horizontal lines that are contained
inside R. Suppose the sides of the rectangle have lengths ` and w. If there are m vertical lines that intersect
R and r horizontal lines, then V = mw and H = r`.

Now, zoom in on a square. Say the side length of the square is z. Since the vertices of the square are so
close to integer points, there are bze vertical and horizontal lines that pass through the square. The lengths
of the vertical and horizontal segments in this square are equal (because it’s a square), so the sum of vertical
lengths is equal to the sum of horizontal lengths. Adding up across all squares, we get that V = H. Using
the formulas for V and H from the previous paragraph, this means that w/` = r/m, which is rational. (The
following picture is a visualization of a portion of the rectangle during this process.)
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problems
1. (a) Show that if q > 1, then there is at most one Diophantine approximation for α with denominator

q.
(b) Show that there are infinitely many Diophantine approximations to an irrational number where

p and q have no common factors.
(c) Show that if α is rational, then it has only finitely many Diophantine approximations.

2. Prove that e is irrational by showing that the partial sums
∑∞

k=1 1/k! are too close to e for e to be
rational. [Hint: Try something similar to problem 1(c).]

3. Prove Theorem 6.
∗ 4. (If you’re familiar with limits.) Let α be an irrational number. A sequence (xn) ⊆ [0, 1) is called

equidistributed if, for every a, b ∈ [0, 1) with a < b, we have

lim
n→∞

#ak ∈ [a, b) with 1 ≤ k ≤ n

n
−→ b− a.

Prove that the sequence an = JnαK is equidistributed whenever α is an irrational number.
5. Pell’s equation is x2 − ny2 = 1, where n is a positive integer that is not a square. There is a trivial

solution (x, y) = (±1, 0), and the question is whether there exists any nontrivial integer solution for a
given n. (If n is a square number, then there are many nontrivial solutions.)
(a) We use Z[

√
n] to denote the set of numbers a+ b

√
n where a, b ∈ Z. If α ∈ Z[

√
n], its norm is

‖α‖ = (a+ b
√
n)(a− b

√
n) = a2 + nb2.

Show that ‖αβ‖ = ‖α‖ ‖β‖ for any α, β ∈ Z[
√
n].

(b) Show that if (x1, y1) and (x2, y2) are solutions to Pell’s equation, then
(
x1x2+ y1y2, x1y2+x2y1

)
is also a solution.

(c) Show that there are infinitely many integers a, b ∈ Z so that |a2 − nb2| < 3
√
n. [Hint: Write

|a2 − nb2| = |a− b
√
n||a+ b

√
n|. There are infinitely many b so that |a− b

√
n| < 1

b . Then show
that |a+ b

√
n| < 3b

√
n for these b.]

(d) Show that there are two distinct pairs of positive integers (a1, b1) and (a2, b2) with ‖a1+b1
√
n‖ =

‖a2 + b2
√
n‖ = N and a1 ≡ a2 mod N and b1 ≡ b2 mod N .

(e) Show that
a1 − b1

√
n

a2 − b2
√
n
∈ Z[

√
n].

(f) Find a nontrivial solution to Pell’s equation.
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3. transcendence
Now we know that we can approximate irrational numbers quadratically. Can we do better? The answer
is . . .

Proposition 8. There is no rational number p/q for which |
√
2− p/q| < 1/4q2.

Proof . If |
√
2−p/q| < 1/2, then q ≤ p ≤ 2q. (In the other case, the theorem is true automatically.) Therefore

|2q2 − p2| = |q
√
2− p| |q

√
2 + p|.

Since 2q2 − p2 is a nonzero integer, we have |2q2 − p2| ≥ 1, and |q
√
2 + p| ≤ (

√
2 + 2)q ≤ 4q. Therefore,

|q
√
2− p| ≥ 1

4q
.

Up to improving the constant, then, there is no stronger theorem than Dirichlet’s for general approximation
by rationals. As for the constant, there is the following result:

Theorem 9 (Hurwitz). For every irrational number α, there are infinitely many nonnegative p, q so that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

Moreover, the theorem is not true if
√
5 is replaced by any larger real number.

We won’t prove the first part of Hurwitz’s theorem, but problem 1 asks you to prove the second part. For
now, it’s not the point.

This theorem applies to all irrational numbers—it’s still plausible that certain irrationals can be approx-
imated better than quadratically. Our next result is an extension of the previous result to any algebraic
number.

Definition 10. A number is algebraic if it is the root of a polynomial with integer coefficients. It is
transcendental if it is not algebraic.

Since every rational number p/q is the root of the integer polynomial qx − p, every rational number is
algebraic.

Theorem 11. If α is a root of an integer polynomial of degree d, then there a constant C > 0 such that there
is no rational number p/q so that |α− p/q| < C/qd.
Proof . Let f be a degree-d integer polynomial such that f(α) = 0, and assume that f(p/q) 6= 0. (Otherwise,
divide f by x − p/q and take the resulting polynomial.) Then f(x) =

(
x − α)g(x) for some polynomial g

(not necessarily with integer coefficients), and∣∣∣∣f(pq)qd
∣∣∣∣ = qd

∣∣∣∣pq − α

∣∣∣∣ ∣∣∣∣g(pq)
∣∣∣∣ .

The left-hand side is at least 1, since it’s a nonzero integer. Setting C = maxα−1≤x≤α+1 |g(x)|−1, we have∣∣∣∣pq − α

∣∣∣∣ ≥ C

qd
.

This says that algebraic numbers can be approximated only so well by rational numbers. So, if we can
construct an irrational number that is supremely well-approximated by rational numbers, we will have built a
transcendental number. This is no small feat! It took nearly 100 years from the definition of a transcendental
number to even prove that one existed—this is what Joseph Liouville did in 1844, and what we will soon do.
In 1874, Georg Cantor proved that the set of algebraic numbers is countable while the set of transcendental
numbers is uncountable. So basically every real number is transcendental—if you pick a random one, it’s
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virtually guaranteed to be transcendental. And yet, proving that any specific number is transcendental is
notoriously difficult, even today.1

Enough history, let’s get to the proof!

Theorem 12 (Liouville, 1844). The number

L =

∞∑
k=1

2−k!

is transcendental.
Proof . Consider the sequence of fractions

pn
qn

=

n∑
k=1

2−k!.

Then qn ≤ 2n! and ∣∣∣∣L− pn
qn

∣∣∣∣ = ∞∑
k=n+1

2−k! ≤ 2−(n+1)!+1 ≤
(
2−n!

)n ≤ 1

qnn
.

If L were the root of a degree-d integer polynomial, there would be a constant C > 0 so that |L− pn/qn| ≥
C/qdn for every n. This would mean that

C

qdn
≤ 1

qnn

for every n; in other words, qn−d
n ≤ 1/C for every n, which is impossible. So L is transcendental.

Definition 13. A Liouville number is a real number α such that for every n ∈ N, there is a rational number
p/q such that ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qn
.

Liouville’s proof that L is transcendental consists essentially of two parts: First, that L is a Liouville
number, and second, that every Liouville number is transcendental.

4. better bounds from below
In 1908, Axel Thue improved Liouville’s theorem like this:

Theorem 14. Suppose α is an irrational root of a degree-d integer polynomial. If γ > d/2 + 1, then there
are only finitely many rational numbers p/q such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qγ
.

This leads to the idea of the irrationality exponent of an irrational number α, which is the smallest
positive number µ such that, for every γ > µ, there are only finitely many rational numbers p/q such that
|α− p/q| < 1/qγ . Equivalently, the irrationality exponent of α is the largest value of µ for which there exist
infinitely many rational numbers p/q such that |α− p/q| < 1/qµ. The irrationality exponent of α is denoted
µ(α).

Every Liouville number α has irrationality exponent µ(α) = ∞ (by definition). Dirichlet’s theorem says
that µ(α) ≥ 2 for every irrational number α. Liouville’s theorem says that µ(α) ≤ d if α is algebraic, and
Thue’s theorem improves this to µ(α) ≤ d/2 + 1. This was improved by Carl Siegel to µ(α) ≤ 2

√
d in 1921.

Finally, in 1955, Karl Roth proved that µ(α) = 2 for every algebraic number α; this won him a Fields Medal.
The astounding consequence of this is that no algebraic number can be approximated better by rational
numbers than Dirichlet originally proved.2

1 The Wikipedia page for transcendental numbers has a sketch of a proof that e is transcendental, for example.
2 You might ask: Is µ(α) > 2 if α is transcendental? Not necessarily! We know that e is transcendental, but µ(e) = 2.
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5. continued fractions
We’ll now turn to a new method for analyzing rational approximations, one that will allow us to prove
different things and also to actually generate good approximations! This is the method of continued fractions.

Consider 43
19 . This is the same as 2 + 5

19 , which seems is really all the reduction we can do. But if we
didn’t want to stop, we could invert the fraction to make the denominator is bigger than the numerator;
then 19

5 = 3 + 4
5 . Do it again: 5

4 = 1 + 1
4 , and there’s really nothing more we can do, since 4

1 = 4.
This seems, perhaps, like a ridiculous thing to do, but what we’ve just calculated is that

43

19
= 2 +

5

19
= 2 +

1

3 + 4
5

= 2 +
1

3 + 1
1+ 1

4

.

The last expression is called the continued fraction expansion of the rational number 43
19 . We usually abbre-

viate the nested fractions by just recording the numbers in the denominator, like this: [2; 3, 1, 4].
Every rational number has a finite continued fraction expansion, because the denominator decreases at

each step. In fact, the process of constructing a continued fraction is very similar to the Euclidean algorithm;
problem 4 asks you to think about this.

Is the continued fraction unique? Almost, but not quite. For example:
43

19
= 2 +

1

3 + 1
1+ 1

3+ 1
1

.

So [2; 3, 1, 4] = [2; 3, 1, 3, 1]. Problem 5 has you prove that this is the only thing that prevents uniqueness.
But enough with rational numbers; what about irrational ones? There’s no reason we couldn’t do the

same process, separating out the integer part, inverting, and repeating. For example:
√
2 = 1 + (

√
2− 1) = 1 +

1

2 +
(

1√
2
− 2

) = 1 +
1

2 + 1
2+ 1

...

.

In this way, we get an infinite continued fraction for each irrational number. Unlike with rational numbers,
each irrational number has a unique continued fraction expansion.

problems

1. Prove one direction of Hurwitz’s theorem: If C >
√
5, then there are only finitely many rational

numbers p/q so that ∣∣∣∣ϕ− p

q

∣∣∣∣ < 1

Cq2
,

where ϕ = (1 +
√
5)/2 is the golden ratio. [Hint: What polynomial is ϕ the root of?]

2. Construct an uncountable set of transcendental numbers.
3. Show that the number

∞∑
k=1

2−3k

is transcendental. [You will need Roth’s theorem.]
4. Why is constructing the continued fraction expansion of a/b similar to applying the Euclidean algorithm

to a and b?
5. Prove that every rational number has exactly two different continued fraction expansions.
6. Find a formula for the continued fraction [1; 1, 1, . . . , 1].
7. Prove that the continued fraction expansion of

√
2 is [1; 2, 2, 2, . . . ].

6



Diophantine approximation Travis
day three Mathcamp 2022

Diophantine approximation
day three

6. continued fractions, continued
Let’s imagine that we have an irrational number that we’ve expanded into a continued fraction:

α = a0 +
1

a1 +
1

a2+
1

a3+ 1
...

,

or α = [a0; a1, a2, a3, . . . ] for short. The convergents to α are what you get by cutting off the continued
fraction at some point:

p0
q0

= a0

p1
q1

= a0 +
1

a1
p2
p2

= a0 +
1

a1 +
1
a2

p3
q3

= a0 +
1

a1 +
1

a2+
1
a3

...
These convergents are what we will focus on today. It would be very nice if the convergents converged to

α (and a tragedy of terminology otherwise!). This is indeed the case, but we’ll only prove that later. For
now, we need to build up some properties.

1 For the rest of these notes, α is an irrational number with continued fraction expansion α =
[a0; a1, a2, a3, . . . ].

It turns out that the numerator and denominator of the convergents satisfy a recurrence relation.

Proposition 15. pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1.
Proof . You can prove by calculating that the theorem is true for n = 1. Assume that the relationship is
true for some n− 1. Then

pn+1

qn+1
= [a0; a1, a2, . . . , an, an+1]

=
[
a0; a1, a2, . . . , an +

1

an+1

]
,

so by the induction hypothesis

pn+1

qn+1
=

(
an + 1

an+1

)
pn−1 + pn−2(

an + 1
an+1

)
qn−1 + qn−2

which simplifies to

=
(anan+1 + 1)pn−1 + an+1pn−2

(anan+1 + 1)qn−1 + an+1qn−2

=
an+1(anpn−1 + pn−2) + pn−1

an+1(anqn−1 + qn−2) + qn−1

=
an+1pn + pn−1

an+1qn + qn−1
.

Besides a particular recurrence relation, this also tells us that pn and qn increase with n.
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Proposition 16. pn+1qn − qn+1pn = (−1)n.
Proof . Induction! You can check that the statement is true for n = 0. Inductively, we have

pn+1qn − qn+1pn = (an+1pn + pn−1)qn − (an+1qn + qn−1)pn

= pn−1qn − qn−1pn

= −(−1)n−1 = (−1)n.

This is a simple-looking and easy-to-prove statement, but it has many consequences.

Corollary 17. pn and qn have no common factors (so pn/qn is a fraction in reduced terms).
Proof . If pn and qn shared a factor, then the right hand side of pn+1qn − qn+1pn = (−1)n would also be
divisible by that factor.

If we divide the equation in Proposition 16 by qnqn+1, we get the statement that
pn+1

qn+1
− pn

qn
=

(−1)n

qnqn+1
.

Since we noted before that qn+1 > qn, this means that∣∣∣∣pn+1

qn+1
− pn

qn

∣∣∣∣ < 1

q2n
,

which almost looks like a Diophantine approximation, but there’s no irrational number.
Moreover, this reformulation means that we can write the continued fraction as an alternating series:

α =
p0
q0

+

∞∑
n=0

(
pn+1

qn+1
− pn

qn

)

= a0 +

∞∑
n=0

(−1)n

qnqn+1
.

This means that

α− pn
qn

=

∞∑
k=n

(−1)k

qkqk+1
,

so ∣∣∣∣α− pn
qn

∣∣∣∣ ≤ 1

qnqn+1
.

In other words, each of the convergents is a Diophantine approximation of α!
Also, the expression of α as an alternating series tells us that pn/qn < α if n is even and pn/qn > α if n

is odd. Summing up:

Theorem 18. The convergents pn/qn of an irrational number α are all Diophantine approximations of α
that satisfy

p0
q0

<
p2
q2

<
p4
q4

< · · · < α < · · · p5
q5

<
p3
q3

<
p1
q1

.

Here, then, is how you find a magic approximation, like we did at the beginning of class. Start by
evaluating the first few terms of the continued fraction. For example, π = [3; 7, 15, 1, 292, 1, 1, . . . ]. The
partial convergent pn/qn will satisfy∣∣∣∣α− pn

qn

∣∣∣∣ < ∣∣∣∣pn+1

qn+1
− pn

qn

∣∣∣∣ ≤ 1

qnqn+1
.

The procedure is therefore: Pick a value of n so that an+1 is much larger than an. Then qn+1 = an+1qn +
qn−1 > an+1qn is much larger than qn, so that |α− pn/qn| < 1/an+1q

2
n. For π, this means we might choose

n = 3, which gives
p3
q3

= 3 +
1

7 + 1
15+ 1

1

=
355

113
,

8



Diophantine approximation Travis
day three Mathcamp 2022

just like what we saw on the first day. And p1/q1 = 22/7, which is perhaps the most famous approximation
to π.

Here’s another example. The continued fraction expansion of eπ is [23; 7, 9, 3, 1, 1, 591, 2, 9, . . . ]. Compare:

eπ ≈ 23.1406926327

[23;7,9,3,1,1] = 23 +
65

462
≈ 23.1406926406.

It’s accurate to 7 decimal places!

7. continued fractions, concluded
It turns out that the convergents are actually “best possible” approximations in a precise sense:

Definition 19. A rational number p/q is called a best approximation of α if |α− p/q| ≤ |α− a/b| for every
fraction a/b with 1 ≤ b ≤ q.

Proposition 20. Every convergent is a best approximation to α.
Proof . Suppose that |α − a/b| < |α − pn/qn| and 1 ≤ b ≤ qn. Since |α − pn−1/qn−1| > |α − pn/qn| and α
lies between pn−1/qn−1 and pn/qn, it must be that a/b also lies between pn−1/qn−1 and pn/qn. First,∣∣∣∣ab − pn−1

qn−1

∣∣∣∣ < ∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ = 1

qn−1qn
.

On the other hand, ∣∣∣∣ab − pn−1

qn−1

∣∣∣∣ = ∣∣∣∣aqn−1 + bpn−1

bqn−1

∣∣∣∣ ≥ 1

bqn−1
,

since a/b 6= pn−1/qn−1. Therefore
1

bqn−1
<

1

qn−1qn
.

Just rearrange to get qn < b, which is a contradiction, since we assumed that b ≤ qn.

We’ll now prove another way that convergents are the “best” approximations.

Theorem 21. If |α− a/b| < 1/2b2, then a/b is one of the convergents of α.

First, we need a stronger lemma:

Lemma 22. If |bα− a| < |qnα− pn|, then b ≥ qn+1.

We could prove it, but it’s a more in-depth calculation than the one before, and not very enlightening.
Let’s see how to use it.

Proof of Theorem 21. Suppose that a/b is not a convergent and that nevertheless |α− a/b| < 1/2b2. Choose
an n so that qn ≤ b < qn+1; the lemma tells us that

|αqn − pn| < |αb− a| ≤ 1

2b
,

so ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

2bqn
.

Since a/b 6= pn/qn, we have ∣∣∣∣pnqn − a

b

∣∣∣∣ ≥ 1

bqn
,

while the triangle inequality gives∣∣∣∣pnqn − a

b

∣∣∣∣ ≤ ∣∣∣∣α− pn
qn

∣∣∣∣+ ∣∣∣α− a

b

∣∣∣ < 1

2bqn
+

1

2b2
.
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Comparing the two inequalities and simplifying, we get
1

2bqn
<

1

2b2
,

which means that b < qn, a contradiction to our hypothesis that qn ≤ b < qn+1.

As for Hurwitz’s theorem, it turns out that among every three consecutive convergents, there is at least
one that satisfies |α − pn/qn| ≤ 1/

√
5q2n; this is enough to guarantee infinitely many approximations. The

actual proof of this, though, is left as an exercise. Number 5, actually.

problems
1. Why is the continued fraction expansion of an irrational number unique?
2. Show that |α− pn/qn| ≥ 1/(2qnqn+1).
3. A continued fraction is called periodic if it eventually repeats: [a0; a1, a2, . . . , ak, a0, a1, . . . , ak, a0, a1 . . . ].

We can abbreviate this by [a0; a1, a2, . . . , ak]. A continued fraction is called eventually periodic if, well,
it’s periodic eventually: [a0; a1, a2, . . . , ak, ak+1, . . . , an].
(a) A quadratic irrational is a number of the form a+b

√
n where a and b are rational numbers. Prove

that any periodic continued fraction represents a quadratic irrational.
(b) The set of numbers of the form a + b

√
n for some fixed n with a, b rational is denoted Q[

√
n].

Prove that the sum, product, and quotient of two numbers in Q[
√
n] is also in Q[

√
n].

(c) Prove that any eventually periodic continued fraction represents a quadratic irrational.
In fact, the converse is true, too: Every quadratic irrational has an eventually periodic continued
fraction. This is much harder to prove.

4. Prove that at least one of every pair of consecutive convergents satisfies |α− pn/qn| < 1
2q2n

.
5. A proof of Hurwitz’s theorem:

(a) Suppose that x ≥ 1. Show that x+ x−1 <
√
5 if and only if x < ϕ and x+ x−1 >

√
5 if and only

if x > ϕ.
∗ (b) Prove that at least one out of every three consecutive convergents satisfies |α− pn/qn| < 1/

√
5q2n.
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solutions
1.
2. |α− pn/qn| ≥ 1

2 |pn/qn − pn+1/qn+1| = 1/2qnqn+1.
3. (a) One way to prove this is to write out the expression and physically manipulate it. Another is to

write
α = [a0; a1, . . . , ak, α]

and use the recursion
α =

pk+1

qk+1
=

αpk + pk−1

αqk + qk−1
.

This yields a quadratic equation with α as a root. The binomial theorem shows that α is a
quadratic irrational.

(b) Just do it
(c) Let β be the quadratic irrational associated to the periodic part of α’s continued fraction expan-

sion, so that α = [a0; a1, . . . , ak, β]. Then

α =
pk+1

qk+1
=

βpk + pk−1

βqk + qk−1
,

so use part (b) to conclude that α is quadratic irrational.
4. Suppose not; then

1

2q2n
+

1

2q2n+1

≤
∣∣∣∣α− pn

qn

∣∣∣∣+ ∣∣∣∣α− pn+1

qn+1

∣∣∣∣ = ∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ = 1

qnqn+1
.

Then
q2n + q2n+1

2q2nq
2
n+1

≤ 1

qnqn+1
,

or q2n + q2n+1 ≤ 2qnqn+1. But this is impossible, since it’s equivalent to (qn − qn+1)
2 ≤ 0.

5. (a) The only solution to x−1 =
√
5 + x with x ≥ 1 is x = ϕ.

(b) Suppose that |α− pn/qn| ≥ 1/
√
5q2n and |α− pn+1/qn+1| ≥ 1/

√
5q2n+1. Then

1√
5q2n

+
1√

5q2n+1

≤
∣∣∣∣α− pn

qn

∣∣∣∣+ ∣∣∣∣α− pn+1

qn+1

∣∣∣∣ = ∣∣∣∣pnqn − pn+1

qn+1

∣∣∣∣ = 1

qnqn+1
.

Simplifying, we get qn/qn+1 + qn+1/qn ≤
√
5. Taking qn+1/qn = x in part (a), we find that

qn+1/qn ≤ ϕ. Since the left side is rational and the right side is not, qn+1/qn < ϕ. Using the
fundamental recurrence for qn, we have

ϕ >
qn+1

qn
=

an+1qn + qn−1

qn
≥ 1 +

qn−1

qn
.

Since ϕ − 1 = ϕ−1, we have ϕ−1 > qn−1/qn, or qn/qn−1 > ϕ. This is only possible if either
|α− pn/qn| < 1/

√
5q2n or |α− pn−1/qn−1| < 1/

√
5q2n.
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