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1. the twelvefold way

1. the twelvefold way

1.1. introduction
The twelvefold way is a set of twelve counting problems that introduce basic notions in combina-
torics, conveniently bundled into a single table. In Stanley’s book, they’re all phrased in terms of
counting the number of functions between two finite sets subject to certain restrictions. But this
terminology is a bit awkward (as evidenced by his switch midway through his discussion of the
way to a metaphor of balls and boxes).

So here’s how we’ll imagine it. We have a collection M of m marbles and a collection B of b
bags. These collections are not necessarily sets; sometimes, we may consider the elements of M
or N indistinguishable. Think of this as having a collection of identical marbles or bags: You can
ascertain the groupings, but you can’t tell one individual marble (or bag) from the other.

We want to count the number of ways to place marbles into bags in ways that satisfy certain
restrictions. If we consider a placement of marbles into bags as a function M → B, the restrictions
are that this function is injective, surjective, or generic (neither). These restrictions correspond
to counting the number of ways of placing marbles into bags such that no bag has more than one
ball; every bag has at least one ball; and no restrictions. In all, we get this table:

The twelvefold table
M B — inj. surj.

dist. dist. (1) (2) (3)
ind. dist. (4) (5) (6)
dist. ind. (7) (8) (9)
ind. ind. (10) (11) (12)

We’ll deal with the table one entry at a time.

1.2. the easy entries
Entry (1). For each marble, we have a choice of b different bags to place it in, so there are bm
distributions.

Entry (2). There are b possible bags to place the first marble in, b− 1 bags for the second, and so
on, so there are b(b− 1) · · · (b−m+ 1) distributions. This number is called the mth falling power
of b and is denoted bm.1

Entry (5). A distribution of marbles corresponds to choosing m different bags out of the b total,
so there are

(
b
m

)
of them.

Entry (8). There is one distribution if m ≤ b—each marble is placed in one of the indistinguishable
bags—and no distribution if m ≥ b.

Entry (11). Same as entry (8).

Entries (8) and (11) can be succinctly formulated using the delta function, which takes in a
proposition P and returns 1 if P is true and 0 if P is false. The values of (8) and (11) are
δ(m ≤ b).

1 This number is also called the mth falling factorial of b; it is sometimes denoted (b)m, which is (to me) less
intuitive. The mth rising power or rising factorial of b, which is defined bm = b(b + 1) · · · (b + m − 1); in the
alternate notation, this is denoted b(m).

1



1. the twelvefold way

1.3. stars and bars and donuts and dividers
Entry (4). We can imagine placing the bags in order, taking out their marbles, and placing them
in a line with a vertical divider between the marbles from consecutive bags. If the first bag has 3
marbles, the second 2, and the third 4, then the diagram we get would look like this:

• • • | • • | • • • •
Counting the number of these diagrams is not so hard: There are m+b−1 positions; in m positions,
we place balls, and in the other b− 1 we place dividers. So there are

(
m+b−1
m

)
=

(
m+b−1
b−1

)
different

distributions.

Entry (6). This is the same as for entry (4), except we need one ball in each section. Notice,
though, that if we subtract one ball from each section, we get exactly the set of diagrams coming
from m− b balls and b bags. So there are

(
m−1
m−b

)
=

(
m−1
b−1

)
different distributions.

An alternate explanation: To get a diagram where each section contains at least one ball, we
need only choose to place b−1 dividers from the m−1 different spaces between the line of m balls.
This, again, is

(
m−1
b−1

)
.

When this concept is introduced in the States, often F is drawn instead of •, so this little trick
goes by the name of “stars and bars.” In some other places, it goes by the alliterative name “donuts
and dividers,” and I suppose they draw little donuts instead of circles.

These numbers are intimately related to something called a composition of a natural number.
Definition 1.1. A composition of a positive integer n ∈ N into k parts is a sequence (λ1, λ2, . . . , λk)
of positive integers which sum to n.

We think of a composition of n as a way to break n down into the sum of k different integers
where order matters. For example, the compositions of 5 into 3 parts are

(3, 1, 1) (2, 2, 1)
(1, 3, 1) (2, 1, 2)
(1, 1, 3) (1, 2, 2).

Exercise 1.1. Find a formula for the number of compositions of n into k parts.
Exercise 1.2. Show that there are 2n−1 different compositions of n into any number of parts.

1.4. stirling numbers
Definition 1.2. The Stirling numbers of the second kind, denoted S(n, k), are the number of ways
to partition an n-element set into k nonempty subsets.

For example, S(4, 2) = 6, since there are six different ways to partition {1, 2, 3, 4} into two
nonempty subsets (four partitions split into a 3-element and a 1-element subset; the other two
split into two 2-element subsets). Trivially, S(n, 1) = S(n, n) = 1 for every n. For simplicity, we
introduce the notation [n] := {1, 2, . . . , n}.
Exercise 1.3. Prove that S(n, n− 1) =

(
n
2

)
and S(n, 2) = 2n−1 − 1.

Entry (9). This is S(m, b). It seems cheap to define away the problem, but that’s the Way It Is.

Entry (3). This is the same as entry (9), except we order the blocks of the partition. There are b!
ways to order b sets, so there are b!S(m, b) distributions.

Entry (7). Now we want to partition M into b different sets, but some of these sets might be
empty. There are S(m, b− k) ways to partition where k of the sets are empty, so the total number
of distributions is

∑m
k=1 S(m, k).

2



1. the twelvefold way

Definition 1.3. The nth Bell number , denoted Bn, is the number of ways to partition an n-
element set into nonempty subsets.

The Stirling numbers have all sorts of interesting behavior. For example, they translate between
the falling and regular powers:

Proposition 1.4. xn =
∑n
k=1 S(n, k)x

k for all n ∈ N.
Proof . Fix some n ∈ N. To show this equality, it suffices to check it for n+ 1 distinct values of x;
in particular, if the statement is true on the positive integers, then it is true for all real values of
x.2 To prove this, we claim that both sides count the number of functions [n]→ [x]. Certainly the
left one does; how does the right? We first group the functions [n]→ [x] by the size of their image.
If |im(f)| = k, then the preimages of each element form a partition of [n] into k nonempty sets;
for each partition of [n], there are xn maps that send each partition to a single, unique element of
[x]. So there are S(n, k)xn functions whose image has size k. Sum over all values of k to complete
the proof.

A more abstract way of looking at this is to consider the vector space Pn(R), the set of real
polynomials whose degree is at most n. The set {1, x, x2, . . . , xn} is a basis for Pn(R), but so
is {1, x, x2, . . . , xn}. The Stirling numbers of the second kind provide a change-of-basis matrix
S =

(
S(n, k)

)
n,k

:
S(n, n) 0 0 · · · 0

S(n, n− 1) S(n− 1, n− 1) 0 · · · 0
S(n, n− 2) S(n− 1, n− 2) S(n− 2, n− 2) · · · 0

...
...

...
. . . ...

S(n, 0) S(n− 1, 0) S(n− 2, 0) · · · S(0, 0)


where S(n, 0) = 0 if n < 0 and 1 if n = 0. If Sa = b, then

∑n
k=0 akx

k =
∑n
k=0 bkx

k.
Finally, we note a formula for the Stirling numbers:

S(n, k) =
1

k!

k∑
i=1

(−1)k−i
(
k

i

)
in.

This can be proven by multiplying both sides by k! and then using Inclusion-Exclusion to show
that the right side counts the number of surjective functions [n]→ [k]. (We do this in Section 1.5.)

So we didn’t cheat too much when we defined the problem away.

1.5. an aside: inclusion-exclusion
The Principle of Inclusion-Exclusion can be stated like this:

Theorem 1.5. If A1, . . . , An are finite sets, then∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ = ∑
∅6=S⊆[n]

(−1)|S|−1

∣∣∣∣∣∣
⋂
j∈S

Aj

∣∣∣∣∣∣ .
This formulation is useful when you want to count the number of items that satisfy at least one

of several different conditions. An equivalent way to state the Principle is useful when you want
to count the number of items that satisfy none of the conditions:

2 In fact, if it’s true for all x ∈ N, then it’s true as a statement about formal polynomials over Z, but we needn’t be
that abstract.
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1. the twelvefold way

Theorem 1.6. If X is a finite set and A1, . . . , An ⊆ X, then∣∣∣∣∣X \
n⋃
i=1

Ai

∣∣∣∣∣ = ∑
S⊆[n]

(−1)|S|
∣∣∣∣∣∣
⋂
j∈S

Aj

∣∣∣∣∣∣ ,
where

⋂
i∈∅Ai = X by convention.

In particular, if
∣∣∣⋂j∈S Aj

∣∣∣ = ak whenever |S| = k, the formula simplifies to∣∣∣∣∣X \
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
k=0

(−1)k
(
n

k

)
ak. (1.1)

How do you prove it? You can use induction, but that gives you no idea what’s going on.
Here’s a different method which is slightly more enlightening. It all comes down to this basic fact:

Lemma 1.7.
∑n
k=0(−1)k

(
n
k

)
= 0 for every n ∈ N.

Proof 1 . Substitute
(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
and expand; everything cancels.

Proof 2 . This is the binomial expansion for
(
1 + (−1)

)n
= 0.

But a bijective proof is nicer:

Proof 3 . We want to show that the number of even subsets of [n] is the same as the number of
odd subsets of [n]. Taking the symmetric difference of a set with {n} is a bijection between these
two collections.

This proof is basically the same as the first: Can you see how?
Anyway, back to Inclusion-Exclusion.

Proof of Theorem 1.6. Pick any element x ∈ X; we show that the number of times it is counted on
the left side of the equation is exactly the same as the number of times it is counted on the right
side of the equation.3 If x /∈

⋃n
i=1Ai, then x is counted on both sides exactly once. If x ∈

⋃n
i=1Ai,

let s denote the total number of sets Ai which contain x. Then on the right, x is counted
s∑

k=0

(−1)k
(
s

k

)
= 0

times, as desired.

To prove the formula for the Stirling numbers of the second kind, let Ai be the set of functions
[n]→ [k] whose image does not contain i. Then you can apply (1.1) to get

S(n, k) =

k∑
i=0

(−1)i
(
k

i

)
(n− i)n;

reversing the order of the dummy variable i gives the stated formula.

3 If you want, what we are proving is a corresponding statement in the free abelian group generated by X: If we set
σ(A) =

∑
a∈A a, then we prove that

σ(X)− σ

( n⋃
i=1

Ai

)
=

∑
S⊆[n]

(−1)|S| σ

( ⋂
j∈S

Aj

)
.
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2. generating functions

1.6. partitions
Definition 1.8. A partition of n into k parts is a sequence (λ1, . . . , λk) of weakly decreasing
positive integers that sum to n. In other words, λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and λ1 + · · · + λk = n.
The number of partitions of n into k parts is denoted pk(n), and the number of partitions of n
into any number of parts is denoted p(n).

Item (12). This is pb(m), pure and simple.

Item (10). This is the number of partitions of m into at most b parts. Every partition of m + b
into b parts can be made into a partition of m into at most b parts by subtracting 1 from each
part. This is a bijection (make sure you see why!), so there are pb(m+ b) total distributions.

Again we’ve defined away the problem, but this time there’s actually no way around it. There
is no formula for the partition function, and studying it actually leads you quite deep into analytic
number theory. We’ll just do a recurrence relation.

Exercise 1.4. Prove that pk(n) = pk(n− k) + pk−1(n− 1).

1.7. the completed table

The twelvefold table
M B — inj. surj.

dist. dist. bm bm b!S(m, b)

ind. dist.
(
m+b−1
m

) (
b
m

) (
m−1
b−1

)
dist. ind. Bn δ(m ≤ b) S(m, b)

ind. ind. pb(m+ b) δ(m ≤ b) pb(m)

Robert Proctor extended this table to a “Thirtyfold Way” in a 2006 preprint.

2. generating functions

2.1. introduction
Definition 2.1. The ordinary generating function of a sequence (an)

∞
n=0 is the power series∑∞

k=0 akx
k. The exponential generating function of (an) is

∑∞
k=0 ak

xn

k! . We write f ↔ (an) if
f is the ordinary generating function of the sequence (an) and g

exp←−→ (bn) if g is the exponential
generating function of (bn). The notation [xn]f means the coefficient of xn in f (so [xn]f = an).

Usually, we consider these not as functions, as the name implies, but as formal power series in
the ring QJxK (or perhaps RJxK or CJxK, but Q is usually all we need).

Herbert Wilf gave a famously good turn of phrase about them:

A generating function is a clothesline on which we hang up a sequence of numbers for
display.

Though I prefer his other quip

5

https://arxiv.org/abs/math/0606404


2. generating functions

In mathematics it is always best to cheat.

Anyway, the useful part of generating functions is that we can import the algebra of polynomials
and power series, and this tells us something about the original sequence. So let’s get to that
algebra.

Proposition 2.2. If f ↔ (an) and g ↔ (bn), then the elements of the sequence (cn)↔ f · g are

cn =

n∑
k=0

akbn−k.

Proposition 2.3. If f exp←−→ (an) and g exp←−→ (bn), then the elements of (cn)
exp←−→ f · g are

cn =

n∑
k=0

(
n

k

)
akbn−k.

Proposition 2.2 is just regular polynomial or power series multiplication; the second is just a
little bit more.

Exercise 2.1. Prove Proposition 2.3.

Here’s the combinatorial interpretation of generating function multiplication. Suppose that
f ↔ (an) and g ↔ (bn), and think of (an) as counting the number of A-structures you can place
on n unlabelled nodes and (bn) as the number of B-structures that you can place on n unlabelled
nodes. (These A- and B-structures might be graphs, trees, orderings, etc.) The coefficient [xn]f · g
is the number of ways to partition n unlabelled nodes into two sets and place an A-structure on
the first and a B-structure on the second. For example, if f is the ordinary generating function for
the number of unlabelled trees with n vertices, then f2 is the generating function for the number
of forests with n vertices and exactly two trees.

Example 2.4. Let f ↔ (1)∞n=0, so f = 1+x+x2+x3+ · · · . The power series fk is the generating
function for the number of compositions of n into k parts, so its coefficients are

[xn]fk =

(
k + n− 1

n

)
.

♦

If f exp←−→ (an) and g
exp←−→ (bn), we can think of an as the number of A-structures that can be

placed on n labelled nodes and bn the number of B-structures that can be placed on n labelled
nodes. Then f · g is the generating function for the number of ways to take n labelled nodes,
partition them into two sets, and place an A-structure on the first set and a B-structure on the
second. If g is the exponential generating function for the number of labelled trees with n vertices,
then g2 is the number of labelled forests with exactly two trees.

Proposition 2.5. A power series f ↔ (an) has a multiplicative inverse g (a power series such
that fg = gf = 1) if and only if a0 ∈ {±1}.1

Example 2.6. The inverse of 1− kx is the power series 1 + kx+ (kx)2 + · · · . ♦

Example 2.7. We let P ↔
(
pk(n)

)
n≥0

. We have

P (x) =

∞∏
k=1

1

1− kx
.

1 In fact, this is a special case of a more general theorem that, when A is a commutative ring, an element of AJxK
is invertible if and only if its constant term is a unit in A.
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2. generating functions

To see this, expand out each term on the right to get
(1 + x+ x2 + x3 + · · · )(1 + x2 + x4 + x6 + · · · )(1 + x3 + x6 + x9 + · · · ) · · ·

When multiplying out, each monomial results from choosing an element in each series, something
like xn = xi1x2i2x3i3 · · · . This corresponds exactly to a partition of n with i1 ones, i2 twos, i3
threes, and so on. So the coefficient of xn in the power series on the right is p(n),

(This seemingly doesn’t account for all terms: What if we choose x in each series? If you wish,
you can define the infinite product as the limit of the finite partial products; this gets what is
described here.) ♦

Composition is also an interesting thing, but the problem is that it’s not always well-defined.
For example, let’s take f = 1 + x and g ↔ (1)n≥0. Then

g ◦ f = 1 + (1 + x) + (1 + x)+(1 + x)3 + · · ·
which makes every coefficient infinite! But if f and g are two power series and the constant term
of g is 0, then the coefficient of xn in g ◦ f is always determined by a finite calculation, so g ◦ f is
well-defined. In fact, there’s a formula:
Proposition 2.8. If f ↔ (an) and g ↔ (bn) with a0 = 0, then g ◦ f ↔ (cn), where

cn =
∑
k≥0

bk
∑

n1,...,nk≥1
n1+···+nk=n

an1
· · · ank

.

Proposition 2.9. If f exp←−→ (an) and g exp←−→ (bn) with a0 = 0, then g ◦ f exp←−→ (cn), where

cn =
∑
k≥0

bk
k!

∑
n1,...,nk≥1
n1+···+nk=n

(
n!

n1! · · ·nk!

)
an1 · · · ank

.

There is a good combinatorial interpretation of the coefficients of the composition of exponential
generating functions. Imagine that you have two different kinds of “structures” that you can place
on a finite set, and the number of these structures depends only on the size of the set. We’ll call
these mini-structures and meta-structures. If an is the number of mini-structures on any n-element
set and bn is the number of meta-structures on any n-element set, then cn is the number of ways
to take an n-element set, break it into nonempty pieces, place a mini-structure on each piece, and
place a meta-structure on the set of pieces.

To see why this is, let X be an n-element set and Πk(X) denote the collection of all unordered
set partitions of X into k nonempty subsets. The number of “mega-structures” described in the
previous paragraph is ∑

k≥0

∑
{B1,...,Bk}∈Πk(X)

bka|B1|a|B2| · · · a|Bk|. (2.1)

Let Πk(X) denote the set of ordered set partitions of X into k subsets. There are k! ordered set
partitions of X corresponding to each unordered set partition, so this sum is equal to∑

k≥0

bk
k!

∑
(B1,...,Bk)∈Πk(X)

a|B1|a|B2| · · · a|Bk|,

There are
n!

n1! · · ·nk!
ordered set partitions (B1, . . . , Bk) of X which satisfy the equations |Bi| = ni, so we can restate
(2.1) as ∑

k≥0

bk
k!

∑
n1,...,nk≥1
n1+···+nk=n

an1
an2
· · · ank

,

7



2. generating functions

which is of course the same as Proposition 2.9.

Example 2.10. The number of labelled trees with n vertices (here labelling means assigning each
element of [n] to exactly one vertex) is nn−2. This is Cayley’s formula; we’ll talk about it later.
Let f exp←−→ (nn−2)n≥1. Because ex exp←−→ (1)n≥0, the coefficient of xn in ef(x) is the number of
ways to take the set [n], break it up into pieces, draw a labelled tree in each piece, and then place
the unique “empty meta-structure” over it all. But this is simply a labelled forest, so ef(x) is the
generating function for the number of labelled forests with n vertices. ♦

Example 2.11. The coefficients of the exponential generating function eex−1 are the Bell numbers,
since it counts the number of ways to split [n] into several sets and then do nothing with them. ♦

From these two examples, we can see that the case g = ex is particularly important. This is
the function we’ll need to use if we want to count the number of total structures from the number
of connected ones, for example.

Theorem 2.12 (Exponential formula). If f exp←−→ (an) counts the number of connected structures
that can be placed on an n-element set, then [xn]ef(x) is the total number ways to divide an n-
element set into connected structures.

Exercise 2.2. Convince yourself of a similar interpretation of composition for ordinary generating
functions: Show that if f ↔ (an) counts the mini-structures and g ↔ (bn) counts the meta-
structures, then g ◦ f ↔ (cn) counts the number of ways to divide [n] into subsets of consecutive
integers, place a mini-structure on each subset, and place a meta-structure on the collection of
subsets.

2.2. lagrange inversion
There is a theorem in complex analysis:

Theorem 2.13 (Complex Lagrange inversion). If f =
∑∞
n=1 anx

n is analytic at x = 0 with a1 6= 0,
then it has a unique compositional inverse function g =

∑∞
n=1 bnx

n that is analytic at x = 0, and

bn =
1

n
[xn−1]

(
x

f(x)

)n
.

It turns out the same is true if you remove the condition of analyticity, and it’s easier to prove,
because you don’t need any complex analysis. To do that, we’ll reformulate the theorem.

Theorem 2.14 (Combinatorial Lagrange inversion). If R(t) =
∑∞
n=0 rnt

n and r0 6= 0, then the
equation f(x) = x ·R

(
f(x)

)
has a unique solution whose coefficents are

[xn]f =
1

n
[tn−1]R(t)n.

Proof of equivalence. Assume that complex Lagrange inversion (without analyticity) holds. Choose
an R(t) with r0 6= 0 and set f = t

R(t) . An inverse to f is a function g so that f ◦ g = g(t)
R(t) = t.

(Since r0 6= 0, there is a multiplicative inverse for R(t).) But this means that g(t) = tR
(
g(t)

)
and

there is a solution to this. That g is the compositional inverse to f and you can check that the
coefficients are correct.

Now suppose that the combinatorial Lagrange inversion holds and take any f ↔ (an) with
a0 = 0 and a1 6= 0. We set R(t) = 1

f(t)/t and receive a function g such that g(t) = tR
(
g(t)

)
=

t g(t)
f(g(t)) , so f(g(t))

g(t) g(t) = t; or, more simply, f(g(t)) = t. So g is the compositional inverse of f .

Why don’t we also need to show that g(f(t)) = t? Well, it’s not too hard to show, using
Proposition 2.8, that any generating function f with [x0]f = 0 and [x1]f 6= 0 has a left inverse and

8



2. generating functions

also a right inverse. Then, necessarily, these two are equal.2 So f always has a full inverse, and
it’s unique.

All told, though, Theorem 2.14 seems to be a pretty odd theorem, and it’s not clear that it’s
actually very powerful. Before we prove it, it’s worth seeing it in action.

2.3. applications of lagrange inversion
Catalan numbers
Welcome to the wonderful world of Catalan numbers. What are they? Just like any other combi-
natorial sequence, they’re the answer to a counting problem.

Definition 2.15. A Dyck path of length 2n is a sequence of n up steps and n down steps such
that, reading left to right, there are never more down steps than up steps. The Catalan number
Cn is the total number of Dyck paths of length 2n.

Dyck paths are usually drawn on the plane with diagonal up and down steps. The sequence
(up, down, up, up, down, up, up, down, down, down), for example, is drawn like this:

They have a ton of combinatorial interpretations. And by this I mean a metric ton. Maybe
two. In Enumerative Combinatorics, Richard Stanley lists sixty-six different interpretations as
exercises, but that wasn’t nearly enough for him, so he made an appendix with even more. Let’s
just list a few.

Exercise 2.3. A proper pairing of 2n parentheses is a way to list n opening and n closing paren-
theses that could occur as an actual grouping; in other words, as you read left to right, there are
never more closing parentheses than opening ones. Show that the number of proper pairings of 2n
parentheses is Cn.

Definition 2.16. A binary tree is a tree with a specified root vertex; every vertex has at most two
children, labelled “left” or “right.” A complete binary tree is a binary tree where each vertex has
either two children or none. (Vertices with no children are called leaves.)

Example 2.17. Binary trees are usually drawn with the root at the top and children coming
downward, sort of like genealogical trees. Binary trees look like this:

The right tree is complete, while the left tree is not. ♦

Proposition 2.18. Cn is the number of complete binary trees with n+ 1 leaves.

2 This is just the usual argument: If g1 is a left inverse and g2 is a right inverse, then g1 = g1 ◦ f ◦ g2 = g2.
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2. generating functions

Proof . Draw a path around the complete binary tree starting at the root and going counterclock-
wise; for example:

Any complete binary tree with n + 1 leaves has 2n edges; record the order of the left and right
edges in this walk, ignoring repeats. For the example tree, the order is l, l, r, r, l, l, r, r: The first
three edges in the walk are left, left; then the second edge is repeated and the next edge is right;
then repeated edges and the next edge is right—and so on. This easily turns into a Dyck path by
converting left edges to up steps and right edges to down steps. Here, we get

Any Dyck path can be converted to the corresponding binary tree by reversing the process, so this
map is a bijection.

The process that orders the edges in this proof is called depth-first search.

Exercise 2.4. Show that the number of binary trees with n vertices is Cn. (Hint: Construct a
bijection to the set of complete binary trees with n+ 1 leaves.)

Definition 2.19. A plane tree is a rooted tree in which the children of each node are ordered.

Example 2.20. Here are two pictures that represent the same rooted tree, but not the same plane
tree.

♦

They are called plane trees because each corresponds to a drawing of the rooted tree in the
plane, where the ordering is left-to-right.

Proposition 2.21. The number of plane trees with n+ 1 vertices is Cn.
Proof . Flip the tree upside down and perform a depth-first search, recording whether the edge is
traversed downward or upward. For the tree

a
b c d

e
j

f
gh

i
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2. generating functions

depth first search traces through the edges in the order a, b, c, . . . , i, j. This is easily converted to
a Dyck path: Convert each up step in the tree to an up step in the Dyck path; same for down
steps. This tree gives the Dyck path

I leave it to you to prove that this map is in fact a bijection.

Anyway, we want to find a formula for the Catalan numbers, and we’re going to do this using
generating functions. The first ingredient is a recursive formula for the Catalan numbers.

Proposition 2.22. The Catalan numbers are related by the recurrence

Cn =

n∑
k=1

Ck−1Cn−k.

Proof sketch. Take a complete binary tree with n + 1 leaves and delete the top vertex. You’re
left with two complete binary trees, one with k leaves and the other with n + 1 − k leaves. This
operation provides a bijection between the set of complete binary trees with n+ 1 leaves and the
set of pairs of complete binary trees (T1, T2) where the total number of leaves amongst T1 and T2
is n+ 1. The number of such pairs where T1 has k leaves is the right side of the equation.

Now: Let C(x)↔ (Cn). Take both sides of this recurrence and multiply by xn to get

Cnx
n = x

n∑
k=1

(
Ck−1x

k−1
)(
Cn−kx

n−k);
then we sum over all n ≥ 1:3

∞∑
n=1

Cnx
n = x

∞∑
n=1

n∑
k=1

(
Ck−1x

k−1
)(
Cn−kx

n−k)
C(x)− 1 = x

∑
k−1≥0
n−k≥0

(
Ck−1x

k−1
)(
Cn−kx

n−k)
C(x)− 1 = x · C(x) · C(x).

At this point, we could write that xC(x)2 − C(x) + 1 = 0 and use the quadratic formula to
conclude that

C(x) =
1−
√
1− 4x

2
.

(We have to choose the minus sign so that the expression has a power series at x = 0.) Then
we could expand this into a power series and determine the coefficient of xn. But this feels a
bit sketchy (though it can be made rigorous via some analytic power series–generating function
correspondence) and the calculation is pesky. Using Lagrange inversion is easier.

The expression C(x)− 1 = xC(x)2 is very similar to the form C(x)− 1 = xR
(
C(x)

)
except for

that pesky 1. So we get rid of it by defining C̃(x) = C(x)− 1; then

C̃(x) = x
(
C̃(x) + 1)2.

3 We can’t include n = 0, because there’s no recurrence when n = 0.

11



2. generating functions

So take R(t) = (1 + t)2. By Theorem 2.14, we have, for n ≥ 1,

Cn = [xn]C̃(x) =
1

n
[tn−1]R(t)n =

1

n
[tn−1](1 + t)2n =

1

n

(
2n

n− 1

)
.

This is the same as 1
n+1

(
2n
n

)
, which is how the formula is usually expressed. And this expression

is true for n = 0, too. So:

Theorem 2.23. Cn = 1
n+1

(
2n
n

)
.

There’s another benefit to Lagrange inversion beyond aesthetics: It generalizes very easily. Let
Cmn denote the number of complete m-ary trees with n+1 nodes; you can check that these numbers
satisfy a similar recurrence relation as Cn, and their generating function Cm(x) satisfies

Cm(x)− 1 = xm−1
(
Cm(x)

)m (2.2)
Since any complete m-ary tree has n ≡ 1(mod m − 1) leaves, the number Cmn 6= 0 if and only
m− 1 | n. So the C̃m(x) := C(x1/(m−1))− 1 is a power series that satisfies the equation C̃m(x) =
x
(
C̃m(x) + 1

)m. Setting R(t) = (1 + t)m solves the problem again, with

[xn]C̃(x) =
1

n
[tn−1](1 + t)mn =

1

n

(
mn

n− 1

)
,

so

Cmn =

{
0 if m− 1 - n
1
k

(
mk
k−1

)
if n = k(m− 1).

In contrast, it seems much more difficult to try to solve (2.2) algebraically, and even if you
could, an absolute pain to expand out analytically and then extract the coefficients. Lagrange
inversion is much simpler.

A different proof of this formula for Cn uses the fact that Cn is the number of plane trees with
n+ 1 vertices.

Exercise 2.5. Let f ↔ (an), where an is the number of plane trees with n vertices.
1. Prove that f(x) = x 1

1−f(x) . (Here, 1
1−x means the multiplicative inverse of 1 − x, which is

the power series 1 + x+ x2 + · · · .)
2. Use Lagrange inversion to show that Cn = [xn+1]f = 1

n+1

(
2n
n

)
.

Rooted labelled trees and Cayley’s formula
Definition 2.24. A rooted labelled tree is, naturally enough, a labelled tree in which one vertex is
declared the root. A planted forest is a labelled forest in which each tree has a root. We’ll denote
the number of rooted labelled trees with n vertices by rt(n) and the number of planted forests with
n vertices by pf(n).

If we let f exp←−→
(
rt(n)

)
and g

exp←−→
(
pf(n)

)
, then the Exponential Formula tells us that

g(x) = ef(x).

Moreover, the coefficient of xn/n! in xef(x) is n pf(n− 1); it is the number of ways to choose a
single vertex and then place a planted forest on the remaining nodes. But this exactly corresponds
to a rooted labelled tree: Declare the single vertex the root, and then connect it to the roots of
the components in the forest. This is a bijection (the inverse simply consists of taking a rooted
labelled tree, deleting the edges incident to the node, and declaring as the new roots of the forest
each vertex that had been adjacent to the old root). This means that

f(x) = xef(x).

12
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The coefficients of f are therefore easily extractable using Lagrange inversion with R(t) = et:
rt(n)
n!

=
1

n
[tn−1]ent =

1

n

nn−1

(n− 1)!
=
nn−1

n!
.

So the number of rooted trees with n vertices is rt(n) = nn−1. Of course, the number of rooted
labelled trees is exactly n times the number of labelled trees, so we’ve just proved Cayley’s formula:

Theorem 2.25. The number of distinct labelled trees with n vertices is nn−2.

And it only took half a page.

2.4. proof of lagrange inversion
Let f ↔ (an). There are two conditions:

an = [xn]xR
(
f(x)

)
= [xn − 1]R

(
f(x)

)
(∗)

an =
1

n
[tn−1]R(t)n (∗∗)

We want to show that condition (∗) and condition (∗∗) are equivalent. To do this, we transform
each condition into a much more formidable-looking sum and then show that these are the same.
Let’s jump in.

We’ll start with condition (∗). It says that

an = [xn−1]
(
r0 + r1f(x) + r2f(x)

2 + · · ·
)
,

or

a1 = r0 and an =

∞∑
k=0

∑
n1,...,nk≥1

n1+···+nk=n−1

rkan1
· · · ank

.

Now, each of the ani
is itself equal to a recurrence, so we can imagine plugging that in, which gives

us a formula in terms of ai with smaller indices, and then using it again and again until we’re left
with a formula for an that uses only the rk.

Now, that’s a lot to keep track of, so it helps to think about it in steps. In the formula above,
each term corresponds to a composition of n − 1. When we substitute the recursion for the first
time and then expand out, each term corresponds to a pair: a composition (n1, . . . , nk) of n − 1,
and for each i, a composition of ni − 1. And so on. It helps to keep track of these steps in a
diagram. Here’s an example for n = 12:

(6, 1, 4)

(1, 4)

∅ (1, 1, 1)

∅ ∅ ∅

∅ (3)

(1, 1)

∅ ∅

But wait just a minute, you say. That’s a tree!
Good eye. Every term in the “unravelling” of the recurrence corresponds to a unique “compo-

sition tree” like this one. If we remove the labels from this tree, we get a plane tree. In fact, each
plane tree corresponds to a unique composition tree. You’ll notice that in the tree above, there
are 6 vertices in the left branch, 1 in the middle, and 4 in the right. This is not a coincidence: In

13
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any vertex of a composition tree, the label of that node tells you the number of vertices in each
branch that flows from it. So we can tell exactly what the compositions on the vertices of a plane
tree must be just from its structure.

Now, what’s the value of the term that the plane tree represents? It’s just the product of a
bunch of rk’s, where k is the number of terms in the composition. The tree shown above has two
compositions into three parts, two into two parts, one into one part, and seven into no parts, so it
corresponds to the term r23r

2
2r

1
1r

7
0. Given a plane tree T , we define the expression

rT =
∏

v∈V (T )

rch(v),

where ch(v) is the number of children of v. What this all means is that we can write condition (∗)
in the very bizarre form

an =
∑

plane trees
T on n
vertices

rT . (?)

Now that we’ve “simplified” the first condition, let’s turn to (∗∗). Under this assumption, the
coefficients are given by

an =
1

n

∑
c1,...,cn≥0

c1+···+cn=n−1

rc1 · · · rcn .

The terms in this sum are indexed by weak compositions of n − 1 into n parts. Consider the
equivalence classes of these compositions generated by cyclic shifts. Each equivalence class must
contain exactly n compositions: If the equivalence class of (c1, . . . , cn) has k compositions, then
k | n and n

k | c1 + · · · cn = n− 1. The only way for this to be true is if k = n.
So after distributing the 1

n factor, the terms are indexed by cyclic equivalence classes of com-
positions of n− 1. We can turn each composition (c1, . . . , cn) into a Dyck-type path composed of
c1 up steps followed by one down step, c2 steps followed by one down step, . . . . For example,

(1, 0, 1, 2, 0)

(0, 1, 2, 0, 1)

(1, 2, 0, 1, 0)

(2, 0, 1, 0, 1)

14
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(0, 1, 0, 1, 2)

All of these paths necessarily end at the height y = −1. But among them, there is exactly one that
remains above the x-axis at all previous steps. It turns out that this is true for each equivalence
class.

Exercise 2.6. Let (c1, . . . , cn) be a composition of n− 1. Suppose that, among the lowest points
in the Dyck-type drawing of this composition, the leftmost one follows the ith down step. Show
that the Dyck-type drawing of (ci+1, . . . , cn, c1, . . . , ci) is a Dyck path with an added down step at
the end. Then show that this is the only cyclic permutation of the composition with this property.

Therefore each term in the sum corresponds to a Dyck path with 2n− 2 steps with an added
final down step. And it’s clear we can go backwards: Each such path corresponds to a term in
the sum. Given a path P of this form, let Pup be the n-element vector (p1, . . . , pn) where pi is the
number of up steps that immediately precede ith down step in P . Let’s define

rP =

n∏
i=1

api .

What we have, then, is that condition (∗∗) is equivalent to the statement that

an =
∑

Dyck paths P
with 2n− 2 steps

plus final down step

rP . (??)

To finish the proof, we want to show that (?) and (??) are the same. To do this, we provide a
bijection between plane trees and modified Dyck paths T 7→ P such that rT = rP . If we find such
a bijection, then the terms of (?) and (??) correspond exactly.

We gave a bijection before between plane trees and Dyck paths, but that bijection doesn’t
preserve the monomial rT . If we modify it a bit, we can make it work. This time, though, instead
of paying attention to the edges, pay attention to the order in which you first encounter the vertices.
Depth-first search on the plane tree

a

b

c d

e f

encounters the vertices in the order (a, b, c, b, d, b, a, e, a, f, a). Removing repeats, we get an ordered
list of first encounters: (a, b, c, d, e, f). We build a modified Dyck path from the list (v1, . . . , vk) by
drawing ch(v1) up steps followed by a down step, then ch(v2) up steps followed by a down step,
and so on. You can check that, starting from a plane tree with n vertices, this will have exactly
n−1 up steps and n down steps (because each vertex contributes one down step, and every vertex
but the root contributes one up step). The modified Dyck path coming from the tree above is
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Exercise 2.7. Convince yourself that this map always produces a modified Dyck path. (Explain
why it must stay above the x-axis until the last step.) Then show that any modified Dyck path
corresponds to exactly one plane tree under this map.

Moreover, this bijection preserves the polynomials rT and rP . Suppose that T 7→ P under
this bijection. If depth-first search on T encounters its vertices in the order (v1, . . . , vn) and
Pup = (p1, . . . , pn), then ch(vi) = pi. Therefore

rT =
n∏
i=1

ach(vi) =
n∏
i=1

api = rP .

So (?) and (??) are equivalent, which means that (∗) and (∗∗) are, as well.

2.5. an extension of lagrange inversion
Lagrange inversion can be extended to the following theorem:

Theorem 2.26. If R(t) =
∑∞
n=0 rnt

n and r0 6= 0, then the equation f(x) = x · R
(
f(x)

)
has a

unique solution, and

[xn]f(x)k =
k

n
[tn−k]R(t)n.

The proof requires only a slight modification of the argument from above.

Proof sketch. Let f ↔ (an). We have

[xn]f(x)k =
∑

n1,...,nk≥0
n1+···+nk=n

an1 · · · ank
. (2.3)

When we unfolded the recurrence in the previous proof, each term was represented by a plane
tree. Each term in (2.3) is therefore represented by a plane forest of k trees: An ordered set
F = (T1, . . . , Tk) where each Ti is a plane tree.

On the other side, consider

[xn−k]R(x)n =
∑

c1,...,cn≥0
c1+···+cn=n−k

rc1 · · · rcn .

So terms in this sum are indexed by compositions of n− k into n parts, each of which corresponds
to a Dyck-type path with n− k up steps and n down steps, ending on the line y = −k.

The map from plane trees to Dyck-type paths ending on y = −1 can be extended to plane
forests by simply enumerating the vertices in a forest first by the overall order of the trees and
then by the depth-first order within. (So if the vertices in T1 are ordered as (v1, . . . , vn) by depth-
first search and the vertices of T2 by (u1, . . . , um), then the vertices of F = (T1, T2) are ordered
as (v1, . . . , vn, u1, . . . , um).) Every Dyck-type path in the image of this map has n − k up steps
and n down steps and the additional property that the only vertex on the line y = −k is the final
one. The converse is also true: Every such path corresponds to exactly one plane forest.4 For the
purposes of this proof, we will call such paths proper.

Now fix a composition (c1, . . . , cn) of n− k and consider the Dyck-type paths corresponding to
the elements of its equivalence class under cyclic permutation. Exactly k of these paths are proper:

4 Take a path P and mark the leftmost vertex on each horizontal line below the x-axis. Each tree in the forest that
maps to P corresponds to a segment between two marked vertices.
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Exercise 2.8. Suppose that (c1, . . . , cn) is a composition of n− k, and suppose the leftmost point
in its Dyck-type path on the line y = −j follows the ijth down step. Show that in the Dyck-type
path of (cij+1, . . . , cn, c1, . . . , cij ), the only vertex on the line y = −k is the final one. Then show
that every other permutation of the composition violates this property.

In particular: If F = (T1, . . . , Tk) corresponds C = (c1, . . . , cn), then the cyclic shifts of F
correspond to the cyclic shift of C whose associated Dyck-type path is proper. If there are n/m
distinct cyclic shifts of C, then there are k/m distinct cyclic shifts of F . So there are exactly n/k
times as many compositions as there are plane forests.

Recalling that rF = rC , we have

[xn]f(x)k =
∑

F=(T1,...,Tk)
|T1|+···+|Tk|=n

rF =
k

n

∑
C=(c1,...,cn)

ci≥0
c1+···+cn=n−k

rC =
k

n
[xn−k]R(x)n.

2.6. statistics
Definition 2.27. A combinatorial statistic on a set S is a function ϕ : S → N0.

We think of S as being a class of combinatorial objects and ϕ as being a measure of something
or, well, statistic on the elements of that class. For example, the function G 7→ |E(G)| that sends
a graph to its number of edges is a simple statistic. So are the maps to its number of vertices,
maximum degree, diameter, girth, and so on.

If ϕ−1(k) is finite for every k ∈ N0, then we can define its generating function

Fϕ =
∑
a∈S

qϕ(a).

If we take S to be the set of connected graphs, for example, then the statistic G 7→ |E(G)| has a
generating function.

Definition 2.28. Two statistics (S, ϕ) and (T , ψ) are equidistributed if Fϕ = Fψ.

For example:

Proposition 2.29. The following statistics on the collection of plane trees with n+1 vertices and
the collection of Dyck paths with 2n steps are equidistributed.

1. The degree of the root vertex of the plane tree.
2. The number of initial consecutive up steps in the Dyck path.
3. The level of the leftmost vertex in a plane tree.
4. One less than the number of times a Dyck path hits the x-axis.

Proof . That (1) and (2) are equidistributed follows from the bijection between plane trees and
Dyck paths presented in Section 2.4; the bijection in Section 2.3 shows that (2) and (3) are
equidistributed, and it also shows that (1) and (4) are equidistributed.

Definition 2.30. The ballot number B(n, k) is the number of Dyck paths with 2n steps and an ini-
tial run of k up steps. (And therefore also any of the equidistributed statistics in Proposition 2.29.)

Proposition 2.31. The following statistics on the collection of plane trees with n+1 vertices and
the collection of Dyck paths with 2n steps are equidistributed.

1. The number of peaks in a Dyck path.
2. The number of leaves in a plane tree.
3. The number of non-leaves in a plane tree.
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2. generating functions

4. One more than the number of double descents (two consecutive downsteps) in a Dyck path.
Proof . The bijection from Section 2.3 shows that (1) and (2), as well as (3) and (4), are equidis-
tributed; the bijection from Section 2.4 shows that (2) and (4) are.

Definition 2.32. The Narayana numbers N(n, k) are the number of Dyck paths with 2n steps
and k peaks. (Or any of the three other interpretations in Proposition 2.31.)

This is enumerative combinatorics: Let’s find the formulas!

Proposition 2.33. B(n, k) = k
n

(
2n−k−1
n−k

)
.

Proof . If f(x) is the generating function for the number of plane trees with n vertices, then f(x)k is
the generating function for the number of plane forests with n vertices and k trees—which is equal
to the number of plane trees with n + 1 vertices. Recall that f(x) = x 1

1−f(x) (see Exercise 2.5),
so our supercharged Lagrange inversion gives

B(n, k) = [xn]f(x)k =
k

n
[xn−k]

(
1

1− x

)n
=

k

n

(
2n− k − 1

n− k

)
,

since ( 1
1−x )

n is the generating function for the number of compositions into n parts.

If you prefer, here’s a more direct proof of the formula.

Second proof of Proposition 2.33. If we horizontally reflect a Dyck path that has an initial run of
k up steps, we get a Dyck path that ends with one up step followed by k down steps. Deleting
this segment results in a Dyck path from the origin to (2n− k − 1, k − 1) that remains above the
x-axis. This operation is a bijection, so we’ll instead count the number of such paths.

If we remove the condition that the path remains above the x-axis, then there are
(
2n−k−1
n−1

)
different paths (we just need to specify where the n − k down and n − 1 up steps are). Say a
path is bad if it intersects the line y = −1. For every such path, we can find the first vertex that
intersects with the line y = −1 and reflect all of the path to the right across this line, like this:

This is a bijection between the set of Dyck paths from the origin to (2n − k − 1, k − 1) and
(2n− k − 1,−k − 1). Since there are

(
2n−k−1

n

)
such paths, we have

B(n, k) =

(
2n− k − 1

n− 1

)
−
(
2n− k − 1

n

)
=

(
2n− k − 1

n− 1

)
−n− k

n

(
2n− k − 1

n− 1

)
=
k

n

(
2n− k − 1

n− 1

)
,

which is equal to k
n

(
2n−k−1
n−k

)
.

Exercise 2.9. Use this technique to provide a direct proof of the formula Cn = 1
n+1

(
2n
n

)
by

counting the number of Dyck paths with 2n steps.

Proposition 2.34. N(n, k) = 1
n

(
n
k

)(
n
k−1

)
.
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2. generating functions

Proof . We know that if f ↔ (an) and f(x) = xR
(
f(x)

)
, then

an+1 =
∑

Dyck paths P
with 2n steps

plus final down step

rP .

We’ll write P ′ to denote the Dyck path obtained from P by removing the final down step. The
number of times r0 appears in the expression rP is one more than the number of double descents
in P ′. So if we set R(t) = q + t+ t2 + · · · , then the solution to f(x) = xR

(
f(x)

)
is a power series

with the coefficients

an+1 =

n∑
k=1

N(n, k)qk.

Before you cry foul—an indeterminate q isn’t a number!—look back at our proof of Lagrange
inversion. All we really used is that they’re members of a commutative ring, so certainly the ring
Z[q] works. Anyway: For this generating function,

an+1 =
1

n+ 1
[tn]

(
q +

t

1− t

)n+1

N(n, k) =
1

n+ 1
[qk][tn]

(
q +

t

1− t

)n+1

=
1

n+ 1

(
n+ 1

k

)
[tn]

(
t

1− t

)n+1−k

=
1

n+ 1

(
n+ 1

k

)
[tk−1]

(
1

1− t

)n+1−k

=
1

n+ 1

(
n+ 1

k

)(
n− 1

k − 1

)
.

And some binomial calculus turns this into 1
n

(
n
k

)(
n
k−1

)
.

For fun, here’s one more interpretation of the Narayana numbers.

Proposition 2.35. There are exactly N(n, k − 1) binary trees with n vertices and k right edges.
Proof . We first present a bijection between the complete binary trees with n + 1 leaves and the
Dyck paths with 2n steps. Any complete binary tree with n+1 leaves has exactly 2n edges. Given
a complete binary tree T , we can perform a depth-first search and record the order in which the
edges are encountered. Then, this list can be transformed into a Dyck path by translating left and
right edges to up and down steps, respectively. For example, the tree on the left is taken to the
Dyck path on the right:

The left edge of any vertex precedes the right edge in the depth first search, so the path that
this mapping produces never crosses below the x-axis. Conversely, it’s possible to write down a
complete binary tree that maps to it; so this correspondence is a bijection which we denote by f .

We also have a bijection between complete binary trees with n + 1 vertices and binary trees
with n vertices by deleting all the leaves. Denote the inverse of this bijection by g. We will focus
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on the bijection h = f ◦ g that takes in a binary tree with n vertices and returns a Dyck path with
2n steps. We will show that the number of peaks of f(T ) is exactly one more than the number of
right edges in T , which proves the desired statement.

Let B be a complete binary tree. When g(B) is constructed from B, a right edge in B
corresponds to the last down step before an up step if and only if that edge is internal (i.e.,
not incident to a leaf). This is because (1) the child vertex of any internal edge has a left edge,
which is next in the depth-first search; and (2) any right edge incident to a leaf is followed in the
depth-first search by another right edge. This means that the set of right edges in a binary tree
T are in exact correspondence to the set of down steps in h(T ) that immediately precede an up
step. This number is one less than the number of peaks in h(T ). So if T has k − 1 right edges,
then h(T ) has k peaks.

3. a handful of sequences

3.1. labelled trees
We’ve looked at the number of labelled trees; now we look at labelled binary and plane trees.

Definition 3.1. A labelled binary tree is a binary tree on the vertex set [n]. (In other words, each
vertex has a label between 1 and n, the number of vertices, and no label repeats.)

The number of binary trees with n vertices is Cn (see Exercise 2.4). Any way that we assign
labels creates a different labelled binary tree, so the total number is just n!Cn. Things become
more interesting when we start adding restrictions to the labellings.

Definition 3.2. A (labelled) binary tree is called increasing if the label of every child is less than
the label of its parent.

Proposition 3.3. There are (n− 1)! increasing binary trees with n vertices.
Proof sketch. Deleting the vertex labelled n is a surjective map from the set of n-vertex increasing
binary trees to the set of (n−1)-vertex increasing binary trees. Moreover, a binary tree with n−1
vertices has n places to add a leaf, so the preimage of every element contains exactly n trees. Now
induct, using the fact that there is 1 = 1! increasing binary tree with 1 vertex.

Here’s an explicit bijection from Sn to the set of increasing binary trees, explained through
example. Take a permutation, say 827951346 ∈ S9 (this is the map 1 7→ 8, 2 7→ 2, 3 7→ 7, etc.),
and split it into two sequences at the 1. Then split each of these sequences at the lowest number
they contain, and so on. We can draw this as a tree like this:

827951346

82795

8 795

79

9

346

46

6

If, instead of writing the whole permutation, we just record the number at which we split, we get
an increasing binary tree:
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1

2

8 5

7

9

3

4

6

Exercise 3.1. Show that this is a bijection.
On to the next labelling: A labelled binary tree is called left-increasing if the label of every

left child is greater than the label of its parent. There are three left-increasing binary trees with
2 vertices:

1

2

1

2

2

1

You can check that there are 16 left-increasing binary trees with 3 vertices.
Problem 3.2. Prove that there are (n+ 1)n−1 left-increasing binary trees with n vertices.

All of the classes “left-decreasing,” “right-increasing,” and “right-decreasing” have the same
number of trees as left-decreasing. (Why?) So we’re left with one last class.
Problem 3.3. Show that the number of left-decreasing right-increasing trees with 1, 2, and 3
vertices are 1, 2, and 7, respectively. Then find a formula for these numbers.
Definition 3.4. A binary search tree is a labelled binary tree in which, for every vertex v, the
label of every vertex in the left subtree of v is less than the label of v, and the label of every vertex
in the right subtree of v is greater than the label of v.
Exercise 3.4. Show that the number of binary search trees with n vertices is Cn. (Hint: How
many binary search trees are there on a given (unlabelled) binary tree?)

Finally, we turn to plane trees.
Problem 3.5. Show that the number of increasing labelled plane trees with 1, 2, and 3 vertices is
1, 3, and 15, respectively. Find a formula for these numbers.

3.2. parking functions
It’s time to introduce a new combinatorial object. You know what that means: Story time.

Imagine that there are n cars, labelled 1 through n from front to back, in a queue for a string
of n parking spots. The situation looks like this:1

1
1

2
2

3
3

4
4

5
5

Each car i has a favorite parking space ai, which we can record in the sequence (a1, . . . , an). Here’s
how these silly drivers park: First, they drive to their favorite parking space. If it’s already taken,
they can’t turn back—it’s a one-way road—so they keep driving and take the first open space. If
they don’t find any open parking spaces, then they keep driving off the end of the page and into
oblivion. A parking function is a sequence in which every car finds a spot to park. (It’s called a
function because we can just as well think of this sequence as a function [n]→ [n].)

1 I couldn’t find a good LATEX car icon, so I just used one of the first clipart pictures I found—super classy.
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Exercise 3.6. Show that any permutation (σ1, . . . , σn) ∈ Sn is a parking function.

If (a1, . . . , an) is a parking function, then there are at most k drivers whose favorite spot is
among the last k. In other words, it’s a necessary condition that, for every k ∈ [n],∣∣{i ∈ [n] : ai ≥ n+ 1− k}

∣∣ ≤ k. (∗)
It turns out that this completely characterizes parking functions.

Exercise 3.7. Show that any sequence (a1, . . . , an) that satisfies condition (∗) is a parking func-
tion.

There is also a different characterization using permutations:

Exercise 3.8. Show that (a1, . . . , an) is a parking function if and only if there is a permutation
σ ∈ Sn such that ai ≤ σi for every i ∈ [n].

And now the question: How many parking functions are there? It’s helpful to think of the
problem in a new way. Instead of arranging n parking spots in a line, let’s arrange n+ 1 parking
spots in a circle. The cars enter at parking spot 1, drive to their preferred spot, and continue
around the circle until the first available spot. In this situation, every car is always able to park,
and there’s one spot left over.

A function [n]→ [n] is a parking function in this new problem if and only if no car ends up in
spot n + 1 at the end. Now, notice: If we partition the functions [n] → [n + 1] into equivalence
classes by cyclic permutations, each equivalence class contains exactly one parking function. Every
equivalence class contains n+ 1 functions, so:

Proposition 3.5. There are (n+ 1)n−1 parking functions on an n-element set.

It’s the Cayley numbers again! These numbers pop up in all sorts of places.

Exercise 3.9. We can extend the parking situation to a scenario with n cars and s spots to define
s-parking functions [n]→ [s]. (We assume that s ≥ n.) Show that there are (s+ 1− n)(s+ 1)n−1

parking functions [n]→ [s].

3.3. the cayley numbers (n+ 1)n−1

Some further places in which the Cayley numbers appear:

Definition 3.6. A plane tree whose n+1 vertices are the set {0, 1, . . . , n} is called child-increasing
if the root is labelled with 0 and, for every vertex with children, the labels of its children increase
from left to right.

Definition 3.7. A labelled Dyck path with 2n steps has each of its up steps labelled with {1, 2, . . . , n},
with no repeats, such that the labels in every consecutive set of up steps are increasing.

A child-increasing plane tree and a labelled Dyck path:

2
4

5
1

3 0

2

1 6

3 5

4 7

Let’s sum up.

Proposition 3.8. There are (n+ 1)n−1 elements in each of the following collections:
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1. labelled trees with n+ 1 vertices,
2. parking functions [n]→ [n],
3. left-increasing binary trees with n vertices,
4. equivalence classes of cyclic shifts of functions [n]→ [n+ 1],
5. child-increasing plane trees with n+ 1 vertices, and
6. labelled Dyck paths with 2n steps.

Proof . (1) is Theorem 2.25, (2) is Proposition 3.5, (3) is Problem 3.2, and (4) is from the fact that
the set has (n+1)n elements and each equivalence class has n+1. Given a labelled tree with n+1
vertices, there is exactly one way to draw it as a child-increasing plane tree, which shows that (1)
and (5) have the same size. And the second bijection between plane trees and Dyck paths (used
in Section 2.4) can be extended to labelled versions by simply writing the labels of the children of
a vertex on the corresponding set of up steps; this shows that (5) and (6) have the same size.

4. polytopes

4.1. the beginning
A polytope is just a generalization of the higher-dimensional analogue of a polygon or a polyhedron.
We’ll start with some basic notions.

Definition 4.1. A set S ⊆ Rd is called convex if for any two points x, y ∈ S, every point tx+(1−
t)y, for 0 ≤ t ≤ 1, is also contained in S. (That is, S contains the whole line segment from x to y.)

Exercise 4.1. Let {Ci}i∈I be a collection of convex subsets of Rd. Show that
⋂
i∈I Ci is convex.

(Note: I needn’t be countable!)

Definition 4.2. A point y ∈ Rd is a convex combination of the points x1, . . . , xn ∈ Rd if there are
real numbers α1, . . . , αn in[0, 1] such that

∑n
i=1 αi = 1 and y = α1x1 + · · ·αnxn. The set of all

convex combinations of a point set X, called the convex hull of X, is denoted conv(X).

For example, the unit ball in Rd is convex, but the unit sphere is not. Now we can introduce
polytopes.

Definition 4.3. A polytope is the convex hull of a finite set of points.

It turns out, though, that polytopes have an alternate description.
A hyperplane in Rd is an affine subspace with dimension d−1. In other words, it’s a translation

of a (d− 1)-dimensional linear subspace. For any (d− 1)-dimensional subspace L of Rd, we choose
a vector u ∈ Rd that is orthogonal to L; then the subspace can be written as L = {v ∈ Rd :
〈u, v〉 = 0}. Given any vector w ∈ Rd, the shift H = L+w is an affine subpsace of Rd. Moreover,
its elements can be written as {v ∈ Rd : 〈u, v〉 = 〈u,w〉}. This description of hyperplanes is often
more useful in practice.

Definition 4.4. Let u ∈ Rd and c ∈ R. The hyperplane determined by u and c is
Hu(c) = {v ∈ Rd : 〈u, v〉 = c}.

The (closed) positive half space associated to Hu(c) is the set
H(
uc) = {v ∈ Rd : 〈u, v〉 ≥ c}.

The negative half-space reverses the inequality, and the corresponding open half-spaces make the
inequality strict.

In short, a half-space is the set of point on one side of the hyperplane.
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Proposition 4.5. A set P ⊆ Rd is a polytope if and only if it is a bounded intersection of finite
number of closed half-spaces.

The idea between the correspondence is that polygons and polyhedra can be characterized in
two ways: By their vertices, corresponding to the convex hull, or by their faces, corresponding
to the half-spaces. (Think for a moment about how a triangle, for example, is the intersection of
three half-spaces.) Proposition 4.5 indicates that this is the case for higher-dimensional polytopes,
as well.

Since each positive half-space is just a linear inequality, this means that polytopes are exactly
the sets that can be represented by a finite list of linear inequalitites:

a1,1x1 + · · · + a1,dxd ≤ c1
a2,1x1 + · · · + a2,dxd ≤ c2...

...
...

an,1x1 + · · · + an,dxd ≤ cn,

or simply the matrix A = (ai,j).

Exercise 4.2. A minimal generating set of hyperplanes for a polytope P is a set of hyperplanes
H1, . . . , Hn such that P =

⋂n
i=1H

+
i and

⋂
i 6=j H

+
i strictly contains P for every j ∈ [n]. Suppose

that P =
⋂m
i=1H

+
i .

1. Show that {H1, . . . , Hm} contains a minimal generating set for P .
2. Show that this subset is unique.
3. Show that any two minimal generating sets for P are equal.

4.2. faces, f-vectors, and h-vectors
Definition 4.6. The dimension of a polytope P is d if P is contained in a d-dimensional affine
subspace but not in any (d− 1)-dimensional affine subspaces.

Any polyhedron can be broken up into smaller pieces with varying dimensions: faces, edges,
and vertices. Our next goal is to extend this to polytopes.

Definition 4.7. Let u ∈ Rd be a vector and P a polytope. The support of P in the direction u is
suppu(P ) = maxx∈P 〈x, u〉.

The hyperplane Hu

(
suppu(P )

)
is the tangent hyperplane to P whose closed negative half-space

contains P .

Definition 4.8. The supporting face of a polytope P in the direction of u ∈ Sd−1 is the set
{x ∈ P : 〈x, u〉 = suppu(P )}.

Note that every supporting face of P is itself a polytope of dimension at most one less than P .
The set of faces of P is, well, the collection of its supporting faces. Faces with dimension 0, 1, and
dim(P )− 1 are called vertices, edges, and facets, respectively.

Definition 4.9. Suppose that P is a polytope with dimension d. The vector (f0, . . . , fd) in which
fk is the number of k-dimensional faces of P is called the f -vector of P . The f -polynomial of P
is fP (t) =

∑d
k=0 fdt

d.

In other words, fP (t) is the generating function for the dimension statistic on the set of faces
of P .

Example 4.10. The cube has 8 zero-dimensional faces (vertices), 12 one-dimensional faces (edges),
6 two-dimensional faces (facets), and 1 three-dimensional face. So its f -vector is (8, 12, 6, 1). ♦
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Under certain conditions, the f -vector can be transformed into something particularly nice.

Example 4.11. The face generating function of the cube is f(t) = 8 + 12t + 6t2 + 1. If we set
h(t) = f(t− 1), then h(t) = 1 + 3t+ 3t2 + 1. ♦

Example 4.12. The face generating function of the simplex is f(t) = 4 + 6t + 4t2 + t3, and
f(t− 1) = 1 + t+ t2 + t3. ♦

In our case, “particularly nice” means this:

Definition 4.13. A d-dimensional polytope P is simple if every vertex is incident to exactly d
edges. In this case, the h-vector of P is (h0, . . . , hd), where

∑d
i=0 hit

i = f(t− 1).

These polytopes are simple in the respect that any vertex of a d-dimensional polytope must be
incident to at least d edges. But it’s also possible to prove that a polytope is simple if and only
if its face structure (that is, the poset of its faces ordered by inclusion) is unchanged by a small
translation of any of one its faces.

Here’s the punchline: For simple polytopes, the h-vector is remarkably simple.

Theorem 4.14. If P is a simple d-dimensional polytope and (h0, . . . , hd) is its h-vector, then
1. hi ≥ 0 for every 0 ≤ i ≤ d,
2. hi = hd−i for every 0 ≤ i ≤ d, and
3. h0 ≤ h1 ≤ · · · ≤ hbd/2c.

We will prove parts (1) and (2). The equalities in part (2) are called the DehnSommerville
equations. Part (3), that the h-vector is unimodal, is remarkably difficult; Stanley first proved it
by relating the h-vector to toric varieties and Betti numbers. There are less difficult proofs now,
but none of them are simple.

Parts (1) and (2) follow from a theorem that provides a visual intuition for the h-vector (The-
orem 4.17).

First, some setup:

Definition 4.15. A linear function ϕ : Rd → R is called generic with respect to a polytope P if it
is not constant on any edge.

Each linear function is given by a vector in Rd. Each edge only disallows a subspace of these
vectors with dimension d− 1, so a generic function always exists.

Definition 4.16. The 1-skeleton of a polytope P is the graph comprised of the vertices and edges
of P .

Theorem 4.17. Let G be the 1-skeleton of a polytope P and ϕ be a generic linear function with
respect to P . If ~G denotes the graph obtained by orienting each edge {u, v} from u to v if ϕ(u) <
ϕ(v), then hi is equal to the number of vertices in ~G with indegree i.
Proof . For each face F in P , let vF denote the vertex in F where α is maximized. Then

f(t) =
∑
F⊆P

tdim(F ) =
∑

v∈V (G)

∑
F :vF=v

tdim(F ).

Since P is simple, every subset of the incoming edges of v in ~G determines a face F for which
vF = v; moreover, every face is determined by such a subset. So∑

F :vF=v

tdim(F ) =
∑

S⊆
{

incoming
edges

}t|S| = (1 + t)indeg(v).

Therefore f(t) =
∑
v∈V (G)(1 + t)indeg(v), and plugging in h(t) = f(t− 1) finishes the proof.
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4.3. the permutohedron
Definition 4.18. The permutohedron Πn is the convex hull of the points {(σ1, . . . , σn) : σ ∈ Sn} ⊆
Fn.

The permutohedron is at most (n−1)-dimensional, since σ1+· · ·+σn =
(
n+1
2

)
for every σ ∈ Sn.

On the other hand, it is not contained in any (n− 2)-dimensional affine subspace.

Exercise 4.3. Show that Πn contains a segment in the direction of e1−ej for every j ∈ {2, 3, . . . , n}.
Then show that Πn is not contained in any (n− 2)-dimensional affine subspace of Rn.

Proposition 4.19. Πn has n! vertices.

Since Πn is defined as the convex hull of n! points, it has at most this many vertices. This
proposition shows that, in fact, every one of these points is a vertex.

It’s possible to show directly that none of the points (σ1, . . . , σn) is in the convex hull of the
others. You can also directly write down a linear function which is maximized at a given vertex.

Exercise 4.4. Do so.

Here’s another way: Any polytope has at least one vertex, so Πn has a vertex among the n!
vertices whose convex hull generate it. But Πn is also invariant under the action of the symmetric
group, so every image of this point must be a vertex; so Πn has n! vertices.

Let’s find the supporting faces of Πn. Let α ∈ Rn. First:

Exercise 4.5. Show that, if α1 < · · · < αn, then (1, 2, . . . , n) is the sole maximizing point in Πn of
the function α(x) =

∑n
i=1 αixi. Then show that if ασ(1) < · · · < ασ(n), then

(
σ−1(1), . . . , σ−1(n)

)
is the sole maximizing point of α(x) in Πn.

If α1 = α2 < α3 < · · · < αn, then two vertices of Πn, specifically (1, 2, . . . , n) and (2, 1, 3, 4, . . . , n)
maximize α(x), so the corresponding face is an edge. In the general case, we have

αi1 = · · · = αin1
< αin1+1

= · · · = αin2
< · · · < αnk−1+1 = · · · = αnk

.

In this case, the face that maximizes α is equal to the convex hull of the vertices where the numbers
{nj−1+1, . . . , nj} fill the coordinates in positions inj−1+1, . . . , inj

(we set n0 = 0 for convenience).
So each face is congruent to SI1×SI2×· · ·×SIk , where Ij = {nj−1, . . . , nj} and n0 = 0: a product
of smaller-dimensional permutohedra!

Moreover, these faces of Πn are indexed by ordered set partitions, and an ordered set partition
with k blocks corresponds to a face of dimension n − k. Since there are k!S(n, k) ordered set
partitions with k elements, the face vector of Πn is given by

fk = (n− k)!S(n, n− k).

In particular, each edge of Πn is determined by an ordered set partition with n− 1 blocks. If
i and j share a block, then the vertices (σ1, . . . , i, . . . , j, . . . , σn) and σ1, . . . , j, . . . , i, . . . , σn) share
an edge. In other words, the edges of Πn are generated by the adjacent transpositions (i i+1).
Here is a picture of Π3:

312
321

231

213
123

132
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To find the h-vector of the permutohedron, pick some α ∈ Rn with α1 > α2 > · · · > αn and
direct the edges of Πn according to its value. We know that each edge of Πn corresponds to an
adjacent transposition. So pick two vertices σ = (σ1, . . . , σn) and

τ = (σ1, . . . , σi−1, σj , σi+1, . . . , σj−1, σi, σj+1, . . . , σn).

These two vertices are connected by an edge directed from σ to τ if i < j and σi = σj − 1. So
indeg(σ) = #{

` ∈ {1, 2, . . . , n− 1} : `+ 1 is to the left of ` in σ
}
.

Definition 4.20. We say that there is a descent at i in a permutation (σ1, . . . , σn) if σi > σi+1.
The number of descents in a permutation σ is denoted des(σ).
Exercise 4.6. Let σ ∈ Sn. Why is 0 ≤ des(σ) ≤ n− 1? Prove that (−1)des(σ) is equal to the sign
of σ (which is 1 if σ can be written as an even number of transpositions and −1 otherwise).

The indegree of σ counts something that’s not exactly a descent. Actually, it counts the number
of descents in the inverse permutation σ−1.
Exercise 4.7. Show that indeg(σ) = des(σ−1). (Hint: Writing σ in two-line notation may help.)
Definition 4.21. The Eulerian number A(n, k) is the number of permutations in Sn with exactly
k descents.

1 The Eulerian numbers are sometimes denoted E(n, k) or 〈 nk 〉. And sometimes A(n, k)
(or any of these other symbols) denotes the number of permutations with k − 1 descents
(meaning permutations with k “runs” of increasing numbers).

So we’ve determined the h-vector:
Proposition 4.22. The coordinates of the h-vector of Πn are given by hk = A(n, k).

The relation f(t) = h(t+ 1) gives us the following result:
Corollary 4.23. For every n ∈ N,

n−1∑
k=0

(n− k)!S(n, n− k)tk =

n−1∑
k=0

A(n, k)(t+ 1)k

Problem 4.8. Find a bijective proof of Corollary 4.23.

4.4. eulerian numbers and the γ-vector
First, some facts about the Eulerian numbers:
Exercise 4.9. Show that A(n, k) = A(n, n− k − 1). Then show that

A(n, k) = (n− k)A(n− 1, k − 1) + (k + 1)A(n− 1, k).

(Hint: What do you get if you remove the letter n from a permutation in Sn?)
We can arrange these numbers in a triangle, just like the binomial coefficients:

1
1 1

1 4 1
1 11 11 1

1 26 66 26 1
1 57 302 302 57 1
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In fact, Pascal’s triangle represents the h-vector of the n-cube.

Exercise 4.10. Show that the h-vector of the n-cube [0, 1]n has coordinates hk =
(
n
k

)
.

There’s a stronger connection between these two triangles, though. Every row in the Eulerian
triangle can be written as an integer linear combination of the rows of Pascal’s triangle. For exam-
ple, if we let Pn and En denote the nth rows of Pascal’s and the Eulerian triangles, respectively,
then

E1 = P1

E2 = P2

E3 = P3 + 2P1

E4 = P4 + 8P2

E5 = P5 + 21P3 + 14P1
...

Actually, this is not so unusual: Any triangular array in which the first and last entry of each row
is 1 will form a basis for the space of finite symmetric integer sequences. (Simply the 1 at each
end allows you to always pick the next coefficient unobstructed.) Here’s the special part: The
coefficients in the linear expression of En from the rows Pn are always positive. These coefficients
comprise the so-called γ-vector of Πn.

Definition 4.24. If P is a simple polytope, its γ-vector is has the form (γ0, . . . , γbd/2c) with
coefficients given by

hP (t) =

bd/2c∑
i=0

γit
i(t+ 1)d−2i.

The γ-polynomial of P is γ(t) =
∑bd/2c
i=0 γit

i.

The term (t + 1)d−2i expands out to the (d − 2i)th row of Pascal’s triangle, and the factor of
ti is included to “center” the row. The h- and f -polynomials are related by the simple expression
h(t) = f(t − 1); the h- and γ-polynomials are related by the not-quite-so-simple-but-not-quite-
complicated expression

h(t) = (1 + t)d γ
( t

(1 + t)2

)
.

Anyway, here’s the surprising result, stated using this vector:

Proposition 4.25. The γ-vector of Πn is nonnegative for every n ∈ N.

This is encompassed by a much larger conjecture:

Conjecture 4.26 (Gal, 2005). The γ-vector of any flag simple polytope has nonnegative entries.

So what’s a flag polytope?

Definition 4.27. Let P be a simple polytope. If
⋂
F is nonempty for every collection F of faces

of P whose elements all pairwise intersect, then P is called a flag polytope.

There’s a different characterization, but we need a new concept. Feel free to skim this or skip
it; the next section doesn’t use it at all.

The dual of a polytope P is another polytope P ◦ whose face structure is the inverse of P .
(More technically, the face poset of P ◦ is the dual of the face poset of P .) In other words, you
can map the k-dimensional faces of P to the (d− k)-dimensional faces of P ◦ so that the inclusion
ordering is reversed.
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For example, the standard octahedron conv(±e1,±e2,±e3) is the dual of the cube [0, 1]3. We
map each face of the cube to the vertex of octahedron that it contains, each vertex to the face
of the octahedron in the same orthant, and each edge connecting two faces in [0, 1]3 to the edge
that connects the corresponding vertices in the octahedron. While the cube has 8 vertices, each of
which is connected to 3 edges, each of which is, in turn, a member of 2 faces; the octahedron has
8 faces, each of which contains 3 edges, each of which, in turn, contains two vertices.

There is actually an explicit operation taking any convex body to its dual; the operation is not
as ad hoc as the previous description might make it seem. For us, right now, the actual definition
isn’t so important; the crucial property is that it reverses the face structure of a polytope.1

If P is a simple polytope, then P ◦ is a simplicial complex. (In case you haven’t yet met this
definition, a simplicial complex on a set E is a nonempty collection S of subsets of E such that
whenever T ⊆ S and S ∈ S, also T ∈ S. An element of S is called a face.) The alternative
characterization is that P is a flag polytope when P ◦ is a clique simplicial complex; that is, F is
a face of P if and only if the vertices it contains form a clique in the 1-skeleton of P .

Question 4.28. What is a combinatorial interpretation of the γ-vector?

4.5. volume of polytopes
When their namesake studied the Eulerian numbers, he did it in the context of polynomials.
Consider this sequence:

x+ x2 + x3 + · · · = x

1− x
x+ 2x2 + 3x3 + · · · = x

(1− x)2

x+ 4x2 + 9x3 + · · · = x

(1− x)3
(1 + x)

x+ 8x2 + 27x3 + · · · = x

(1− x)4
(1 + 4x+ x2)

Parts of these polynomials look a lot like generating functions for the Eulerian numbers. In
fact, Euler took this as the definition of these numbers:

∞∑
k=1

knxi =
x

(1− x)n+1
An(x).

We’ll prove it as a theorem.

Theorem 4.29. An(x) =
∑n−1
k=0 A(n, k)x

k.

The first thing we need to check, though, is that there even is a polynomial that we can multiply
by x(1− x)−(n+1) to get the generating function for (kn)∞k=1? Actually, it’s not so hard: we know
that (

x
d

dx

)n
x

1− x
=

∞∑
k=1

knxk.

Expanding out the left side is a mess, but you can check that the result is a big sum of polynomials
over the denominator (1 − x)n. In fact, you can prove Theorem 4.29 this way, using induction.

1 If P ⊆ Rd is a convex body, then
P ◦ := {y ∈ Rd : 〈x, y〉 ≤ 1}.

Each point of P ◦ corresponds to a closed half-space that contains both the origin and P (and vice-versa). For this
reason, the polar is usually only applied to convex bodies that contain the origin; this is usually no problem, since
we can translate it to ensure that 0 ∈ P .
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Once you expand everything out, the proof essentially comes down to the recurrence relation for
the Eulerian numbers. But that proof is neither fun nor enlightening, so let’s do something else.

The volume of a polytope is exactly what you would expect: The integral of 1 over its region
in space. (Or, if you prefer, the Lebesgue measure of the polytope.) The volume of a polyhedron
(the not-necessarily-bounded intersection of half-spaces) P in the positive orthant Rd≥0 may not
be finite, but we can still get a handle on it by stratifying by slices. We’ll use hyperplanes with
points

∑
i xi = k for some k ∈ Z. Let Slk denote the kth “slice,” that is,

Slk = {x ∈ Rd≥0 : k − 1 ≤ x1 + · · ·+ xd ≤ k}

and Slk(P ) denote the region Slk ∩P . Since Slk is a bounded region, the volume of Slk(P ) is finite.
So for any polyhedron P ⊆ Rd≥0, we can define its slice-volume generating function

S(P ) =

∞∑
k=1

d!Vol
(

Slk(P )
)
xk.

What’s the d! for? Well, it turns out that if P is a lattice polytope (each vertex is a point in Zd),
then the volume of P is a rational number whose denominator divides d!, so d!Vol(P ) is an integer
for every lattice polytope P .

It turns out that the Eulerian numbers already have an interpretation in terms of this slice
polynomial.

Theorem 4.30. S([0, 1]n) = xAn(x).

Apparently this result is incipient in some 1886 work of Laplace, though it has a completely
different focus. Richard Stanley provided a one-page proof of Theorem 4.30 in a 1977 paper.

Problem 4.11. Read and understand this paper.

The slices Slk([0, 1]n) are called hypersimplices, denoted by ∆n,k;2 so n!Vol(∆n,k) = A(n, k−1).
The special case ∆n,1 is usually denoted simply by ∆n. It is the convex hull of e1, . . . , en and the
origin.

We’re almost ready to prove Theorem 4.29. We just need one more ingredient.

Lemma 4.31. Vol(∆n) =
1
n! .

Proof . The case n = 1 is clear. For n ≥ 1, we stratify ∆n by slices parallel to the nth coordinate;
thus

Voln(∆n) =

∫ 1

0

tn−1 Voln−1(∆n−1) dt =
1

n
Voln−1(∆n−1),

which is 1
n by induction.

Corollary 4.32. n!Vol(Slk) = kn − (k − 1)n.
Proof . Slk = k∆n \ (k − 1)∆n (up to a set of measure 0).

Let’s do it.

Proof of Theorem 4.29. From Corollary 4.32, we see that S(Rn≥0) = (1−x)
∑∞
k=1 k

nxk; combining
this with Theorem 4.30, it suffices to prove that

S(Rn≥0) =
S([0, 1]n)

(1− x)n
.

2 An alternative definition of ∆n,k is the convex hull of the vectors in {0, 1}n that have exactly k ones and n − k
zeros. The polytope defined in this way is geometrically different but combinatorially the same.
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Now, S(P + ei) = xS(P ) for every standard basis vector ei. In particular, the unit cube tiles the
positive orthant, so

Rn≥0 = [0, 1]n
n∑
i=1

(1 + ei + 2ei + · · · ),

so

S(Rn≥0) = S([0, 1]n)

n∏
i=1

(1 + x+ x2 + · · · ) = S([0, 1]n)

(1− x)n
.

Question 4.33. Can you find a bijective proof of Theorem 4.29?

4.6. the associahedron
A noncrossing subdivision of a polygon is what it sounds like: A set of noncrossing lines that
connect vertices of a polygon, dividing it into several pieces. For example, here are three different
subdivisions of a regular octagon:

1

2

3

45

6

7

8 1

2

3

45

6

7

8 1

2

3

45

6

7

8

The rightmost subdivision is called a triangulation, simply because the polygon is divided into
triangles. A noncrossing subdivision is a triangulation if and only if no further noncrossing lines
can be added.

Definition 4.34. The n-dimensional associahedron Assocn is an “abstract polytope”—that is, a
poset of faces—consisting of the noncrossing subdivisions of the regular (n + 2)-gon, ordered by
reverse refinement. (If α refines β, then α < β.)

In other words, Assocn is like the face structure of a polytope divorced from any geometrical
rendering. In fact, it’s not obvious that it has a geometric realization, but we’ll get to that. For
now, consider Assoc2, the subdivisions of a square. There are three of them:

1

23

4 1

23

4 1

23

4

The left and the right subdivision refine the middle one, so we think of the middle subdivision as
representing a face that contains the two other subdivisions, each of which is a vertex.

Here is a representation of Assoc3:3

3 This is not very visually appealing, but I didn’t want to spend the time trying to figure out how to place
TikZpictures inside nodes of a meta-TikZpicture. This graphic is from this website.
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Exercise 4.12. Show that the number of triangulations of a regular (n + 2)-gon is the Catalan
number Cn. (In other words, Assocn has Cn vertices.)

What about the number of k-dimensional faces? (That is, the number of noncrossing subdivi-
sions of an (n+2)-gon with n− 1− k lines.) Here’s one way to count them. For clarity, we’ll start
with 0-dimensional faces: triangulations. Given a triangulation, we can form a complete binary
tree out of it, like this:

1

2

3

45

6

7

8

The process for making this tree is to first place a point in every triangle, then draw a line
through every edge between adjacent triangles, and also a line through each boundary edge. Delet-
ing the line that passes through the edge between vertex 1 and vertex n+ 2 produces a complete
binary tree. (When drawing the binary tree on the right, it’s important to keep the relative
locations of the child and parent nodes rotationally the same.)

Exercise 4.13. Show that this is a bijection from the set of triangulations of an (n + 2)-gon to
the set of complete binary trees with n+ 1 vertices.

You can pull the same stunt for noncrossing subdivisions that aren’t necessarily triangulations,
For example:

1

2

3

45

6

7

8

Each face of Assocn corresponds to a plane tree with n+1 leaves and the additional property that
every non-leaf vertex has at least two children. A face of dimension k corresponds to such a tree
with n− k non-leaf vertices.

Now we come the the crucial question: Is the associahedron an actual polytope? In other
words, can the face structure of Assocn be geometrically realized? The answer is yes, and Jean-
Louis Loday described a particularly nice one in 2004; explaining it and proving that it does, in
fact, realize the associahedron comprise the next section.
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4.7. geometric realization of the associahedron
Definition 4.35. Given two set X,Y ∈ Rn, their Minkowski sum is

X + Y = {x+ y : x ∈ X and y ∈ Y }.

With this simple definition, we can define the polytope.

Definition 4.36. Let e1, . . . , en denote the standard basis in Rn. For each 1 ≤ a ≤ b ≤ n, define
∆[a,b] := conv(ea, ea+1, . . . , eb). Then

An :=
∑

1≤a≤b≤n

∆[a,b],

where the symbol
∑

denotes the Minkowski sum.

Theorem 4.37. The polytope An is a geometric realization of Assocn.

To prove it, we’ll need a lemma. Recall that suppu(P ) is the support of u on P : The set of
points in P on which 〈u, x〉 is maximized.

Lemma 4.38. If P and Q are polytopes in Rn, then

suppu(P +Q) = suppu(P ) + suppu(Q).

Proof . Pick any u ∈ Rn. Every point in P +Q has the form p+ q with p ∈ P and q ∈ Q. If 〈p, u〉
and 〈q, u〉 are maximal, then their sum 〈p+ q, u〉 must be, as well. Conversely, if one of the inner
products is not maximal, then 〈p+ q, u〉 is not maximal, either.

On to the proof.

Most of a proof of Theorem 4.37. Fix some u ∈ R. Lemma 4.38 indicates we should consider
suppu(∆[a,b]). But this is easy:

suppu(∆[a,b]) = conv
(
ek : a ≤ k ≤ b and uk = max

a≤i≤b
ui
)
.

In particular, suppu depends only on the relative order of the coordinates of u.
Now we show a bijection between the faces of An and plane trees with n+ 1 vertices in which

every non-leaf vertex has at least two children. Given a sequence (u1, . . . , un), we form the tree
iteratively: If largest value in the sequence occurs k times, then form a root node with k + 1
children. Removing the instances of the largest value breaks u into k + 1 subsequences (some of
them possibly empty); at the ith child vertex, repeat this process with the ith subsequence. For
example, if u = (1, 3, 2, 2, 1, 3), then

1

1

3 3

2 2

As the labels indicate, each “nook” in the tree corresponds to a coordinate of u. Now we want to
ask: If u and v produce the same plane tree, does suppu(An) = suppv(An)? And what about the
converse?

The answer is affirmative for both, because the plane tree determines the support on ∆[a,b]

and vice versa. To determine the support on ∆[a,b], simply consider the highest nook(s) that
are between the ath and (b + 1)th leaves. The corresponding coordinate(s) correspond to the
vertices in the support—no matter the vector u that generates the tree. For example, for the tree
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above, suppu(∆[3,5]) = conv(e3, e4), since the highest nooks correspond to the third and fourth
coordinates. Conversely, the support on the sets ∆[a,b] completely determines the “nook structure”
of the tree.

A face F = suppu(An) is contained in a second face G = suppw(An) when one or more of the
inequalities between the coordinate values in u is replaced by equality in w. In the tree picture,
this corresponds to retracting one or more edges. You may check that, in our bijection between
noncrossing subdivisions and planar trees, erasing one of the edges in the subdivision corresponds
to retracting an edge in the tree. So the face structure of An corresponds exactly to the face
structure of Assocn.

In fact, this proof gives a way to calculate the vertices of An.

Exercise 4.14. Let T be a complete binary tree T with n + 1 leaves. For each i ∈ [n], let vi be
the vertex at the ith nook of T . We define `i as the number of leaves in the left branch of vi and
rv as the number of leaves in the right branch of vi. Show that the vertices of An are the points
x(T ) = (`1r1, `2r2, . . . , `nrn) as T varies across all complete binary trees with n+ 1 vertices.

This particular realization of Assocn is not symmetric. Take, for example, the only one I can
easily render here: A3. It is the sum

e1

e2 e3

+

e1

e2

+
e2 e3

It’s missing the single vertices ∆[1,1], ∆[2,2], and ∆[3,3], but these only translate the polytope, so
we’ll omit them. Adding the first two, we get

+
e2 e3

Adding these two together gives A3:

4.8. graphical associahedra
We can use this realization of the associahedron to define a polytope associated to any graph.

Definition 4.39. Let G be a simple, undirected, connected graph G with vertex set [n]. A subset
I ⊆ [n] is called G-connected if G|I is connected; that is, if there is a path from any vertex in I
to any other vertex in I using only edges that connect elements of I. The graphical associahedron
associated to G is the polytope A(G) ⊆ Rn defined by

A(G) :=
∑
I⊆[n]

I is G-connected

∆I ,
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where
∑

denotes the Minkowski sum and ∆I = conv(ei : i ∈ I).4

For example, when G = Pn, the path with n vertices, we get the associahedron An. Since V (G)
is always G-connected, A(G) is a Minkowski sum of subsets of the (n − 1)-dimensional simplex
that includes the whole simplex. This means that A(G) is an (n− 1)-dimensional polytope.

Exercise 4.15. Show that A(Kn) is a geometric realization of the permutohedron Πn.

Just as before, we can calculate the faces of A(G) as

suppu
(
A(G)

)
=

∑
I⊆[n]

I is G-connected

suppu(∆I)

=
∑
I⊆[n]

I is G-connected

∆J(I),

where J(I) = {j ∈ I : uj = maxi∈I ui}. Let’s begin by determining the vertices; we’ll obtain those
when each coordinate of the vector u is distinct. We’ll do this by example. Suppose that G is this
graph:

We can imagine the vector u by writing the value uv at vertex v; perhaps our vector u looks
like this:

55555555555555555

99999999999999999 66666666666666666
11111111111111111

88888888888888888

3333333333333333344444444444444444
22222222222222222

77777777777777777

For the convenience of this example, we’ll take the vertex label to be the same as its u-value, so
ui = i. If a G-connected set I contains u9, then suppu(I) = u9. If it doesn’t contain 9, then I
is completely contained in one of the three connected components of G that result after deleting
vertex u9:

55555555555555555

99999999999999999 66666666666666666
11111111111111111

88888888888888888

3333333333333333344444444444444444
22222222222222222

77777777777777777

4 These polytopes are also sometimes referred to as nestohedra for reasons that will become clear later.
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If I is completely contained in the right component {u1, u3, u6, u8}, then suppu(I) = u8—unless
u8 /∈ I, in which case I is contained in either {u1, u6} or {u3}, the two components of {u1, u3, u6, u8}
obtained by deleting u8. And so on. Repeating this process, we get a nested set of connected
components like this:

To determine suppu(I), simply take the smallest outlined region R that wholly contains I; then
suppu(I) is the vertex of R that is contained in the fewest regions overall.

This grouping of the vertices of G is all the information required to determine the vertex
suppu

(
A(G)

)
. This procedure can be extended to any vector u, even when some coordinates are

equal. At each step, we draw regions that encompass the connected components once the highest
u-valued vertices are deleted. For example:

22222222222222222

44444444444444444 11111111111111111
11111111111111111

55555555555555555

2222222222222222255555555555555555
33333333333333333

22222222222222222

Definition 4.40. A tube in a graph G is a nonempty proper subset of V (G) which induces a
connected subgraph. A tubing of G is a collection T of tubes such that, for every I, J ∈ T ,

1. either I ⊆ J , J ⊆ I, or I ∩ J = ∅; and
2. if I ∩ J = ∅, then I ∪ J is not a tube.
The second condition can be equivalently stated: If I ∩ J = ∅, then there is no edge from a

vertex in I to a vertex in J . If T is has k tubes, then we call it a k-tubing. We write T ⊆ T ′ when
every tube in T is a tube in T ′. (This is nothing more than usual set containment.) What this
section hints at (and the proof is not much harder) is this:
Theorem 4.41. Let G be a graph with n vertices. The set of faces in A(G) of dimension k are in
bijection with the set of (n− 1− k)-tubings of G. Moreover, a face F contains another face F ′ if
the tubing for F ′ contains the tubing for F .

This theorem can be economically phrased in terms of a dual.
Definition 4.42. The nested set complex of a graph G, denoted N (G), is the simplicial complex
on the set of tubes of G whose faces are the tubings of G.
Theorem 4.43. For any graph G, the nested set complex N (G) is dual to the graphical associa-
hedron A(G). In other words, there is an inclusion-reversing bijection between the faces of N (G)
and the faces of A(G).

This duality is the reason graphical associahedra are sometimes referred to as “nestohedra.” The
nested set complex has many nice properties: all the maximal subsets have the same cardinality
(this property is called pure), it’s a clique simplicial complex, and it’s topologically equivalent to
a sphere. For these polytopes, Gal’s conjecture is not a conjecture; it’s a theorem.

36



5. posets

5. posets

5.1. definitions
Definition 5.1. A partially ordered set, or poset, is a set X together with a binary relation 4
such that
◦ x 4 x for every x ∈ X (reflexivity);
◦ if x 4 y and y 4 z, then x 4 z (transitivity); and
◦ if x 4 y and y 4 x, then y = x (anti-symmetry).

The best-known example of a poset is the set of subsets of a given set S with the containment
⊆ as the partial order. For a different example, say that (x1, . . . , xn) 4 (y1, . . . , yn) for two points
x, y ∈ Rn if xi ≤ yi for every i ∈ [n]. This, too, is a partial order.

For the rest of this section, (X,4) will always be a partially ordered set. Also, we use the
notation x ≺ y to denote the fact that x � y and x 6= y.

Definition 5.2. We say that y ∈ X covers x ∈ X if x ≺ y and if x � z � y, then z = x or z = y.
In this case, we write xl y.

In other words, y covers x if there are are no elements strictly between them. If X is finite, then
the covering relations completely determine the partial order. This information can be displayed
visually in a Hasse diagram, where each element of X is a vertex, there is an edge from x to y if
xly, and the vertices are drawn so that all edges point upward. Infinite posets are not necessarily
characterized by their covering relations. The poset (Z,≤) is, but (Q,≤) doesn’t even have any
covering relations.

Some posets have a special structure:

Definition 5.3. A lattice is a poset (X,4) such that each pair of elements x and y has a unique
minimal upper bound, denoted x ∨ y, and a unique maximal lower bound, denoted x ∧ y.

The poset
(
P(S),⊆

)
is a lattice: The minimal upper bound of U and V is U ∪ V and the

maximal lower bound is U ∩V . (Note the similarity of ∪ to ∨ and ∩ to ∧; this is in fact where the
notation comes from.) This poset is called the Boolean lattice on the set S. The Boolean lattice
on the set [n] is denoted Bn.

But there is an intrinsically algebraic definition of lattices, as well.

Definition 5.4. A set X with two binary operations ∧ and ∨ is called an algebraic lattice if the
two operations are both associative and commmutative and satisfy the absorption laws:

1. x ∨ (x ∧ y) = x and
2. x ∧ (x ∨ y) = x

for every x, y ∈ X.

You can check that any Boolean lattice satisfies these absorption laws. If these operations
really are analagous to set intersection and union, then we’d like them also to be idempotent. But
it turns out that absorption already guaratees this:

Proposition 5.5. If (X,∧,∨) is an algebraic lattice, then x ∧ x = x and x ∨ x = x.
Proof . Applying the two absorption laws to the middle expression, we have

x ∧ x = x ∧
(
x ∨ (x ∧ x)

)
= x;

the other case is similar.

While algebraic lattices seem a little off-kilter, it turns out are simply an algebraic description
of poset lattices.

37

https://en.wikipedia.org/wiki/Hasse_diagram


5. posets

Proposition 5.6. Every algebraic lattice is a poset lattice and vice versa.
Proof sketch. To prove (⇒), define x 4 y if and only if x ∨ y = y. You can check that 4 is then a
partial order and the resulting poset is a lattice. For (⇐), define ∨ and ∧ as the unique minimal
upper and maximal lower bounds, respectively, and check the absorption laws.

In posets, there is a distinction between minimal and minimum elements in a poset. An element
x is called minimal if whenever z 4 x, then z = x (no element is smaller than x); it is called a
minimum element if x 4 y for every element y ∈ X. For example, consider the set of nonempty
subsets of {1, 2, 3, 4} ordered by inclusion. This poset has 4 minimal elements—{1}, {2}, {3},
and {4}—but no minimum element. The same distinction can be made between maximal and
maximum elements.

Exercise 5.1. Prove that, if a poset (X,4) has a minimum element, it is unique. (The same is
true for maximum elements, of course.)

Because of this uniqueness, we use the notation 0̂ and 1̂ to denote the minimum and maximum
elements of a poset—if they exist. In a finite lattice, they always do.

Proposition 5.7. Every finite lattice contains a maximum and a minimum element.
Proof . Because ∧ is associative, the expresion

∨
x∈X x is well-defined; it is an element that is less

than or equal to every element of the lattice—so it is a minimum element. Similarly,
∧
x∈X x is a

maximum element.

Exercise 5.2. Find an infinite lattice with neither a minimum nor a maximum element. (Make
sure it’s a lattice, not just a poset!)

Definition 5.8. A chain in a poset (X,4) is a sequence of elements (x1, . . . , xn) such that x1 ≺
x2 ≺ · · · ≺ xn. A saturated chain is a chain that is not a proper subsequence of any other chain.

In B3, the sequence ∅ ⊂ {1} ⊂ {1, 2, 3} is a chain, but it’s not saturated because the chain
∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3} properly contains it.

Proposition 5.9. Bn has exactly n! saturated chains.
Proof sketch. A saturated chain contains exactly one subset of size k for every 0 ≤ k ≤ n. If
∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = [n] is a chain, we can write down a sequence (c1, . . . , cn), where ci is the
single element in Si \Si−1. This sequence is necessarily a permutation, and this correspondence is
a bijection between permutations and saturated chains.

The ordered Bell number OBn is the number of ordered set partitions of [n]. So OBn =∑n
k=0 k!S(n, k). See Wikipedia for more information, including a variety of interesting alternate

formulas.

Proposition 5.10. The number of chains in Bn is 4OBn.
Proof . If we can show that the number of chains that do not include ∅ or [n] is OBn, then we’re
done. To every chain ∅ 6= S1 ⊂ S2 ⊂ · · · ⊂ Sk 6= [n], we associate the ordered set partition(
S1, S2 \ S1, . . . , Sk \ Sk−1, [n] \ Sk

)
. This is a bijection.

What about relations between posets? It’s much as you would expect.

Definition 5.11. If (X,4) and (Y,≤) are posets, a map f : X → Y is called order-preserving if
f(x) ≤ f(y) whenever x ≤ y. We say that f is an isomorphism if f is an order-preserving bijection.
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5.2. q-analogues and the lattice of subspaces
Now we’ll look at a poset of a decidedly different kind. We use Fq to denote the finite field with q
elements.1

Definition 5.12. If q is the power of a prime, we let Lq(n) denote the poset of subspaces of Fnq ,
ordered by inclusion.

In fact, Lq(n) is a lattice: If S and T are two subspaces of Fnq , then S ∩ T = S ∧ T and
span(S ∪ T ) = S ∨ T . One interesting fact about Lq(n) is that it is self-dual.

Definition 5.13. The dual of a poset (X,4) is the poset (X,4′) where x 4′ y if and only if y 4 x.

In other words, the dual of poset is obtained by reversing all the inequalities, or, more geomet-
rically, by turning the Hasse diagram upside down.

Proposition 5.14. The dual of Lq(n) is isomorphic to Lq(n).

Exercise 5.3. Show that the map
S 7→ {x ∈ Fnq : 〈x, s〉 = 0 for every s ∈ S}

is an isomorphism from Lq(n) to its dual.

Our next goal is to count the number of saturated chains of Lq(n). These are called the
complete flags of Fnq . For each saturated chain ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = Fnq , we can choose a
basis (e1, . . . , en) of Fnq such that (e1, . . . , ek) is a basis for Sk; this can be done by simply choosing
each ek ∈ Sk \ Sk−1. It’s easy to count the number of such sequences: The first vector e1 can be
any nonzero vector, so there are qn − 1 options; the second vector can be any nonzero vector not
in the span of e1, so there are qn − q options; in general, there are qn − qk−1 options for ek. So
there are

(qn − 1)(qn − q) · · · (qn − qn−1)

sequences (e1, . . . , en).
Each sequence determines a flag, but each flag is associated to multiple sequences. How many?

If the flag ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = Fnq corresponds (e1, . . . , en), then each ek is in Sk \ Sk−1, so
there are qk − qk−1 ways to choose ek. In other words, each flag corresponds to

(q − 1)(q2 − q) · · · (qn − qn−1)

different sequences. In total, then, there are
qn − 1

q − 1

qn − q
q2 − q

· · · q
n − qn−1

qn − qn−1
=
qn − 1

q − 1

qn−1 − 1

q − 1
· · · q

2 − 1

q − 1

q − 1

q − 1

saturated chains in Lq(n).
In the remainder of the section, we’ll connect this formula to the so-called q-analogues.2

Roughly speaking, a q-analogue of a combinatorial object is a polynomial in q that specializes
to that combinatorial object when q = 1. Of course, lots of polynomials will end up doing this, so
it’s a matter of experience to see what are the “useful” q-analogues. (See this blog post for a brief
overview of the philosophy.)

We’ll start with a q-analogue of the natural numbers.

1 There is a finite field with q elements if and only if q is a power of a prime; if it exists, it is unique up to isomorphism.
See Appendix A.1 for a very brief overview of finite fields, or see Keith Conrad’s notes.
2 Basically everywhere, this term is spelled q-analog. But I can’t abide that—“analog” seems always to bring to mind
the analog/digital dichotomy instead of the noun form of “analogous”—so I’m going to be contrarian throughout
this section and include the ue.
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Definition 5.15. The q-analogue of n ∈ N is the polynomial

[n]q := 1 + q + · · ·+ qn−1 =
qn − 1

q − 1
.

One intuition for this definition is that it incorporates “how we count up to n” into its defi-
nition. But don’t worry about that too much. We can rapidly extend our q-analogues to other
combinatorial objects.
Definition 5.16. The q-factorial of n is

[n]q! := [n]q[n− 1]q · · · [1]q.
Actually, this q-factorial is an example of something that we’ve already seen:

Proposition 5.17. [n]q! is the generating function for the number of inversions of permutations
in Sn.

(Given a permutation σ, an inversion of σ is a pair i, j with 1 ≤ i < j ≤ n such that
σ(i) > σ(j).) In other words, [n]q! is the generating function of a statistic. While n! counts the
number of permutations, [n]q! counts the number of partitions and stratifies them according to the
number of inversions. You can see a little more of this interaction here.

We can use these q-factorials to rephrase our count of the complete flags in Lq(n).
Proposition 5.18. The number of saturated chains in Lq(n) is [n]q!.

One last q-analogue:
Definition 5.19. The q-binomial coefficient is(

n

k

)
q

=
[n]q!

[k]q! [n− k]q!
.

It seems like the q-binomial coefficient is unlikely to be a polynomial. Surprisingly, it always
is. (Compare this to the corresponding definition

(
n
k

)
= n!

k!(n−k)! . From this formula, it’s not clear
that

(
n
k

)
is an integer.)

Exercise 5.4. By convention, we set [0]q! = 1. Show that
(
n
0

)
q
=

(
n
n

)
q
= 1. Then show that(

n
1

)
q
=

(
n
n−1

)
q
= [n]q.

Exercise 5.5. Prove the recurrence relations(
n

k

)
q

= qn−k
(
n− 1

k − 1

)
q

+

(
n− 1

k

)
q

and (
n

k

)
q

= qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
q

.

Exercise 5.6. Use induction to show that
(
n
k

)
q

is a polynomial with positive integer coefficients
for every n ∈ N0 and 0 ≤ k ≤ n.

Actually, the q-binomial coefficients have an interpretation in terms of Fnq , as well.

Proposition 5.20. The number of subspaces of Fnq of dimension k is
(
n
k

)
q
.

Proof . For each subspace T of dimension k, there are [k]q![n − k]q! different complete flags ∅ =
S0 ⊂ S1 ⊂ · · · ⊂ Sn = Fnq such that Sk = T . (This is because S0 ⊂ · · · ⊂ Sk can be any complete
flag of the vector space Sk, which is isomorphic to Fkq , and the flags Sk ⊂ · · · ⊂ Sn are in bijection
to the complete flags of the quotient vector space Fnq /Sk. These choices of flags are independent.)

Since there are [n]q! complete flags and each subspace of dimension k corresponds to exactly
[k]q![n− k]q! of them, there are

(
n
k

)
q

subspaces of dimension k.
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1 Be wary! Not everything generalizes directly to the world of q’s. For example,
n∑
k=0

(
n

k

)
q

6=
(
[2]q

)n
= (1 + q)n.

Instead, the q-binomial formula is
n∑
k=0

qk(k−1)/2

(
n

k

)
q

=

n−1∏
k=0

(1 + qk).

(One combinatorial proof of this appears on p. 74 of Enumerative Combinatorics, volume 1,
and the two pages preceding.)

5.3. the partition lattice
Here’s another special poset.

Definition 5.21. The partition lattice Πn is the poset consisting of the unordered set partitions
of [n], ordered by reverse refinement. (So σ 4 τ if every block of σ is a block of τ .)

Here is an image of Π4:3

But is Πn actually a lattice? If σ = {σ1, . . . , σk} and τ = {τ1, . . . , τr} are both set partitions
of [n], then their common refinement is the set partition whose blocks consist of the nonempty
intersections σi ∩ τj . The common refinement of σ and τ is their greatest lower bound in Πn. To
define their join, let ∼ be the equivalence relation on [n] generated by the relationships x ∼ y if x
and y are either in the same block of σ or in the same block as τ . The partition induced by ∼ has
both σ and τ as refinements; it is, in fact, their maximal lower bound. So Πn is a lattice.

Πn has a special property:

Definition 5.22. A poset (X,4) is graded if there is a function ρ : X → N such that
1. If x ≺ y, then ρ(x) < ρ(y), and
2. If xl y, then ρ(y) = ρ(x) + 1.

The function ρ is called a rank function of X and ρ(x) is called the rank of x.

3 Image created by Tilman Piesk and placed on Wikicommons under a Creative Commons Attribution 3.0 Unported
license.
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The idea is that the rank defines a set of “levels” of X, and every covering relation goes between
one level and the next. If X is finite, then condition (2) implies condition (1). Not every poset is
graded: (R,≤) is one simple example. But it’s also true that not every finite poset is graded. The
poset with five elements and the Hasse diagram

is not a graded poset.
But many interesting finite posets are, in fact, graded. The Boolean lattice Bn has the rank

function ρ(S) = |S|, for example; the lattice Lq(n) has the rank function ρ(S) = dim(S). The
partition lattice, too, has a rank function: This one sends each set partition to n minus the number
of blocks that it has. You can see the graded structure of Π4 in the image above. The number of
elements of Πn with rank r is exactly S(n, n − r). From Exercise 1.3, we know that the Stirling
numbers are not symmetric, so Πn is not a self-dual poset.

We’re on a roll here, so we may as well ask the same question of this lattice: How many
saturated chains does it have?
Proposition 5.23. If n > 1, the partition lattice Πn has exactly

∏n
k=2

(
k
2

)
saturated chains.

Proof . A saturated chain is a sequence P0 ≺ · · · ≺ Pn−1 of partitions of [n] where Pk+1 is formed
from Pk by merging two of its blocks into one. There are

(
n−k
2

)
ways to do this; multiplying out

gives the final answer.
From here, we discuss two special subposets of Πn.

Definition 5.24. Let Pn be a regular n-gon with vertices labelled 1, 2, . . . , n in clockwise order.
Given a set partition σ = {σ1, . . . , σk}, we may associate each block σi to the convex hull of the
corresponding vertices in Pn. We call σ non-crossing if none of these convex hulls intersect.

For example, the set partition {145, 23, 68, 7} is represented as

1

2

3

45

6

7

8

So this particular set partition is non-crossing.
There is another way to draw partitions. Given a partition of [n], we draw n dots in a line,

numbered from 1 to n, and draw a line from a to b if they are consecutive numbers in a block of
the partition. For example, if σ = {124, 568, 3, 7} this diagram looks like

1 2 3 4 5 6 7 8

A set partition is noncrossing if and only if none of the lines in this picture cross.
Theorem 5.25. The number of noncrossing partitions of [n] is the Catalan number Cn.
Proof sketch. Here’s a simple bijection between noncrossing partitions of [n] and binary trees with
n vertices. To each noncrossing partition of [n] associate the binary search tree that contains an
edge between i and j if and only if i < j are in the same block and there is no k in that block such
that i < k < j. For example, for the noncrossing partition above, the corresponding tree is
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4

2

1 3

8

6

5 7

This is a bijection; from Exercise 3.4, there are exactly Cn binary search trees, and therefore Cn
noncrossing partitions.

Exercise 5.7. Fill in the gaps in the previous proof: Why is there always a binary search tree of
the described form, and why is it unique? Why is the described map a bijection?

In fact, the previous proof tells us more: Every noncrossing partition with k blocks is sent to
a binary tree with n− k left edges. (There is a bijection from binary trees to binary search trees
that consists of removing the labels.) By Proposition 2.35, there N(n, n− k+ 1) such trees. (The
number of binary trees with k left edges is the same as the number of binary trees with k right
edges.) So we get:

Proposition 5.26. There are N(n, n− k + 1) noncrossing partitions with exactly k blocks.

1 The poset of noncrossing partitions is not a sublattice of Πn. For example: The join of the
partitions {13, 2, 4} and {24, 1, 3}, both of which are noncrossing, is the partition {13, 24},
which is crossing. (The common refinement of two noncrossing partitions is noncrossing,
though.)

Exercise 5.8. Show that the poset of noncrossing partitions is nevertheless a lattice: Any two
noncrossing partitions have a unique least upper bound. (It’s simply the case that that this upper
bound might not be their join in Πn.)

The method of drawing partitions using lines gives rise to another subposet of Πn.

Definition 5.27. A set partition is called nonnested if no line in its line drawing lies entirely below
another.

For example, the partition represented on the right is nonnested, while the one on the left is
not, since the arc between 3 and 5 is contained in the arc between 2 and 8. (Singletons below a
line are okay—it’s only the lines that matter.)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

The set of nonnested partitions also forms a subposet of Πn, but it’s again not a sublattice:
The join of the partitions {14, 2, 3} and {23, 1, 4} is nested, while neither of the original partitions
is. The meet, too, doesn’t work out. Take these two partitions:

1 2 3 4 5 6 1 2 3 4 5 6

Neither of them is nested, but their meet is
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1 2 3 4 5 6

which is nested.

Exercise 5.9. Determine whether the poset of nonnested partitions forms an independent lattice;
that is, does each pair of elements have a unique maximal lower bound and minimal upper bound?
(Hint: Consider the previous example.)

So how many elements does this poset have?

Proposition 5.28. There are Cn nonnested partitions of [n].
Proof . We biject the set of nonnested partitions to the collection of Dyck paths.

1
2

3
4

5
6

7

Choose some nonnested partition σ and draw its line diagram. First, draw
a triangular array with n − 1 rows and columns. Then, for each arc from
i to j (with i < j) in the line drawing of σ, place an X in the square with
the column marked i and the row marked j. For example, if the partition σ
is {147, 26, 3}, we get the diagram shown on the left. The relative positions
of any two X’s is northwest-southeast: This is exactly equivalent to the fact
that no lines are nested.

To complete the bijection, we just take this picture outside on a sunny
day.4 The sun appears in the upper right corner, as it would any elementary-school art project,
and each X casts a shadow, as shown below.5

1
2

3
4

5
6

7

If you take the boundary of the shadow and rotate the board a bit, you get a Dyck path.

1234567
This process is reversible, so it is a bijection.

Just as in Theorem 5.25, this proof actually gives more. Any partition with k blocks will have
a line drawing with n− k lines, in which case the triangle has n− k X’s, resulting in a Dyck path
with n− k + 1 peaks. So we get:

Proposition 5.29. The number of nonnested partitions with k blocks is N(n, n− k + 1).

Problem 5.10. Find a bijection between noncrossing partitions and nonnested partitions, prefer-
ably one that preserves the number of blocks.

4 Credit to Alex Postnikov for describing it this way.
5 Icon made by <a Aranagraphics at flaticon.com.
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You might wonder, based on all of this, whether these posets are actually isomorphic. They’re
not. If you did Exercises 5.8 and 5.9, you found that the poset of noncrossing partitions is a lattice,
but the poset of nonnested partitions is not.

Noncrossing partitions, then, are a little nicer than nonnested ones. Here’s one more nifty
property:

Proposition 5.30. The lattice of noncrossing partitions is self-dual.

We’ll show the bijection by example. Start with a noncrossing partition and draw its convex
representation. Then draw new coordinates 1̄, . . . , n̄ with ı̄ between i and i+1, and connect as the
new dots as much as possible without creating any overlaps with the first diagram. For example:

1

2

3

45

6

7

8 1
1̄

2
2̄

3
3̄

44̄5
5̄

6
6̄

7
7̄

8 8̄
1̄

2̄

3̄
4̄

5̄

6̄

7̄
8̄

This construction is called the Kreweras complement.

Exercise 5.11. Convince youself that Kreweras duality is a bijection on noncrossing partitions
that reverses the ordering relation.

To continue the theme, we’ll count the saturated chains in this lattice. But the proof will
actually use some other structures, so we’ll only state it for now. For brevity, NCn is the lattice
of noncrossing partitions of [n].

Theorem 5.31. The number of saturated chains in NCn is nn−2.

A proof appears in Section 5.5.

5.4. symmetric group lattices
Absolute order
We know that the symmetric group Sn is generated by the transpostitions (i j). This gives us a
way to measure the the complexity of a permutation, by how “mixed up” it is.

Definition 5.32. The absolute length or reflection length of a permutation σ ∈ Sn, denoted `T (σ),
is the minimum number ` such that σ can be written as the composition of ` transopositions.

Every permutation can be written as the product of at most n− 1 transpositions. But in fact,
we can do better. Recall that every permutation can be written as a product of cycles.

Proposition 5.33. `T (w) is equal to n minus the number of cycles in σ. (We include the cycles
with one element.)
Proof sketch. First up, any cycle (τ1 τ2 · · · τk) can be written as the product (τ1 τ2)(τ2 τ3) · · · (τk−1 τk).
So the length of a cycle of length k is k − 1. If σ has r cycles, then this means that σ can be
written as the product of n− r transpositions.

On the other hand, multiplying a permutation τ creates at most one new cycle. So a permu-
tation with only r cycles is the product of at least v − r transpositions.

We can use this length function to define a partial order on the symmetric group.
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Definition 5.34. The absolute order on Sn is defined by its covering relations: σlT τ if and only
if there is a transposition (i j) such that σ = τ(i j) and `T (σ) = `(T ) + 1.

Neither of these conditions implies the other; both are necessary. This is a graded poset—the
absolute length provides a rank function. It is not a latice: The maximal elements of Sn under the
absolute order are the so-called long chains: cycles of length n. There are (n− 1)! of these. Since
this poset doesn’t have a maximum element, it can’t have a join operation. It does, though, have
a minimum element: the identity permutation ε.

Clearly, then, this is not a self-dual poset. The structure near the top of the poset is quite
different than the structure near the bottom. From a certain perspective, this is because the poset
is many copies of the same lattice layered on top of each other. If we pick a single copy of that
lattice, things become much simpler.

Definition 5.35. Suppose (X,4) is a poset and x 4 y. The interval between x and y is [x, y] :=
{z ∈ X : x 4 z 4 y}.

Proposition 5.36. If c1 and c2 are two long chains in Sn, then [ε, c1] is isomorphic to [ε, c2].
Proof . Any two long chains are conjugate. (This is a special case of the fact that any two permu-
tations with the same cycle structure are conjugate.) So there is a permutation σ ∈ Sn such that
c2 = σc1σ

−1. Define the map ϕ : [ε, c1] → [ε, c2] by ϕ(τ) = στσ−1. This preserves the absolute
order and is a bijection.

Exercise 5.12. Prove that ϕ actually has these properties.

For convenience, we fix the specific long chain c := (1 2 · · ·n). Once we restrict to a specific
interval, things become much nicer: [ε, c] is self-dual. In fact, this follows from an isomorphism:

Theorem 5.37. [ε, c] is isomorphic to NCn.
Proof sketch. Here’s the bijection: Take a noncrossing partition and arrange each block in in-
creasing order. Then turn each block into a cycle by writing parentheses around it. For example:
{135, 26, 4} 7→ (135)(26)(4).

Exercise 5.13. Fill in the details of this proof.
(i) Why is each permutation obtained in this way a member of the interval [ε, c]?
(ii) Why is this map a bijection?
(iii) Why does it preserve order?

Weak Bruhat order
We can thin out the transpositions to make a much more concise generating set: The adjacent
transpositions si = (i i+1). In fact, it’s possible to prove that Sn is isomorphic to the group
generated by s1, . . . , sn−1 modulo the relations

sisi+1si = si+1sisi+1

sisj = sjsi if |i− j| ≥ 2

s2i = ε.

Definition 5.38. The adjacency length6 of a permutation σ, denoted `(σ), is the least number `
such that σ can be written as the product of ` adjacent transpositions.

Just as before, there’s an intrinsic meaning to this length.

6 This is a nonstandard term.
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Proposition 5.39. `(σ) is the number of inversions in σ.

Exercise 5.14. Prove Proposition 5.39. (Hint: First prove that multiplying a permutation by an
adjacent transposition changes the numer of inversions by exactly 1.)

We can copy the definition of the absolute order to get yet another poset.

Definition 5.40. The Weak Bruhat order on Sn is defined by the covering relation σ l τ if there
is an i ∈ [n− 1] such that σ = τsi and `(σ) = `(τ) + 1.

Exercise 5.15. Prove that this poset is a lattice.

Its minimum element is the identity permutation and its maximal element is the permutation
n, n− 1, . . . , 2, 1.

Exercise 5.16. Prove that this lattice is self-dual.

Actually, we’ve already encountered this poset in some other form, as the 1-skeleton of the
permutohedron. Remember that the edges of the permutohedron are correspond to permutations
connected by adjacent transpositions. So we’ve taken this graph and given it the structure of a
lattice.

Counting the saturated chains in this poset is a bit more complicated. The short answer is this:

Theorem 5.41. The number of saturated chains in Sn in the weak Bruhat order is
(
n
2

)
!
∏n−1
k=1(2k−

1)−(k−1).

Every saturated chain corresponds to a “reduced decomposition” of (n n−1 · · · 2 1): a minimal
way to write the cycle as a product of adjacent transpositions. And there’s actually more to the
story. These reduced decompositions are actually in bijection with a particular class of things
called standard Young tableaux. But let’s not get into that now.

5.5. decompositions of the long cycle
We have three different objects that are counted by nn−2: labelled trees with n vertices, saturated
chains in NCn, and decompositions of the long cycle c = (1 2 · · ·n) into a product of n − 1
transpositions. This section provides bijections between these, which proves Theorem 5.31. We’ll
also allow a good amount of sidetracking.

We actually know that there is a bijection between the set of decompositions of c into trans-
positions and the set of saturated chains in NCn, since the two lattices are isomorphic. It’s worth
seeing how this plays out anyway; here’s an example with n = 5:

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

ε (1 3) (1 3)(4 5) (1 2 3)(4 5) (1 2 3 4 5)

l l l l

If we write it out each element of the permutation sequence as a product of transpositions, we
get

εl (1 3)l (1 3)(4 5)l (1 3)(4 5)(1 2)l (1 3)(4 5)(1 2)(3 5).

These transpositions can actually be easily read off from the sequence of diagrams. The sequence
appears again below, this time with a line from i to j drawn in when the transposition (i j) is
added.
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1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

ε (1 3) (1 3)(4 5) (1 3)(4 5)(1 2) (1 3)(4 5)(1 2)(3 5)

l l l l

If, in the kth step, you merge two partition blocks B1 and B2, then this corresponds to mul-
tiplying the permutation by the transposition (i j), where i is the last vertex of B1, in clockwise
order, that occurs before B2, and j is the last vertex of B2, in clockwise order, that occurs before
B1. So that’s the bijection between noncrossing partitions of [n] and decompositions of c into
transpositions.

Now let’s go from decompositions of c to labelled trees. We can actually build on what we’ve
already done. Here’s how: Draw n evenly spaced verties in a circle. Then, given a decomposition
of c, draw in the transpositions as edges and label them in the order they appear. For our running
example (1 3)(4 5)(1 2)(3 5), this becomes

1

2

34

5
1

2

3

4

This tree has three properties:
1. It is, in fact, a tree.
2. No two edges cross.
3. At each vertex, the labels of the edges increase in counterclockwise order.

These properties are true for every labelled graph obtained in this way. For example: Any graph
obtained like this from a decomposition of c has n − 1 edges. So if it is connected, it’s a tree.
Otherwise, it has at least two different components, which is impossible: The corresponding per-
mutation would have two different cycles, and c has only one. The other properties similarly follow
from the construction.

Exercise 5.17. Show that any tree obtained in this way satisfies properties (2) and (3), as well.

In fact, we can go back to the construction to see that any tree with these three properties
corresponds to a saturated chain in NCn (and thus a decomposition of c). So this correspondence
is a bijection.

Now, each tree with n vertices and edges labelled by 1, . . . , n− 1 can be embedded in a circle
to satisfy these three conditions, and this embedding is unique up to rotation. (Take a moment
to see why this is.) So these drawings in the circle are in bijection with edge-labelled trees that
have a declared root note. (The bijection maps the root node to 1, which determines the rest of
the mapping.)

Now we biject these edge-labelled rooted trees with vertex-labelled trees. To do this, declare
the root node to have label 0; then, if e is the last edge in the unique path from the root vertex to
v, set the label of v to be the label of e. For example:
This returns a graph with n vertices labelled 0, . . . , n− 1. The process is easily reversible, so it’s a
bijection. And we already know (by Theorem 2.25) that there are nn−2 such trees, so this proves
Theorem 5.31.
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2 5 3

4 1 6

0

2 5 3

4 1 6

Noncrossing trees
So that’s that for bijections, but now we have a new object—noncrossing trees—so let’s count
different them. To be more specific, a noncrossing tree with n vertices is a labelled tree such
that, when it is drawn in a circle with labels arranged in clockwise order, no two edges cross. For
example, here is one noncrossing tree:

1

2

3

45

6

7

8

Problem 5.18. How many noncrossing trees with n vertices are there?

We can also visualize noncrossing trees using arc diagrams; the tree above becomes

1 2 3 4 5 6 7 8

The condition that edges don’t cross in the circular diagram is exactly the same as the condition
that edges don’t cross in the arc diagram.

Definition 5.42. A labelled tree is called alternating if, whenever i1, i2, . . . , ik is a sequence of
adjacent vertex labels, we have i1 > i2 < i3 > i4 · · · , or the same with all inequalities reversed.

Exercise 5.19. Prove that a labelled tree is alternating if and only if, when each edge is directed
from the smaller label to the larger label, every vertex in the tree is either a source or a sink.

Proposition 5.43. The number of noncrossing alternating trees with n vertices is Cn−1.
Proof sketch. We biject with the set of binary trees with n−1 vertices. In the middle of each edge
in the arc diagram of the tree, place a new vertex, and connect two vertices if one is directly below
the other. For example:

1 2 3 4 5 6 7 8

Exercise 5.20. Show that any noncrossing alternating tree contains an edge betweeen 1 and n.
Then use this to fill out the proof of Proposition 5.43.

Problem 5.21. A labelled tree is called non-nesting if in its arc diagram, there is not a pair of
edges ac and bd with a < b < c < d. Show that the number of non-nesting alternating trees is also
Cn−1.
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Hurwitz problems
We can restate the result on decompositions of the long cycle like this:

Proposition 5.44. The number of (n − 1)-tuples (t1, . . . , tn−1) of transpositions in Sn such that
t1 · · · tn−1 is an n-cycle is (n− 1)!nn−2.

This problem has been grandly generalized to statements about decompositions of “permuta-
tions of this type” into “permutations of that type.” Counting problems like this are called Hurwitz
problems. The most general result is the ESLV formula, named after its authors Torsten Ekedahl,
Sergei Lando, Michael Shapiro, and Alek Vainshtein; even stating it would be much too difficult
for these notes. Instead, we’ll state result on decompositions into transpositions that’s still quite
general.

Definition 5.45. Let σ be a permutation, and write it as a product of disjoint cycles such that
the length of the cycles is nonincreasing. The ordered list λ1 ≥ λ2 ≥ · · · ≥ λ` of the lengths of the
cycles is called the cyclic type of σ.

Theorem 5.46. Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λ` > 0) be a partition of n, and let mi be the number of
parts of λ that are equal to i. We call a k-tuple (t1, . . . , tk) of transpositions in Sn niftyniftyniftyniftyniftyniftyniftyniftyniftyniftyniftyniftyniftyniftyniftyniftynifty7 if
◦ t1 · · · tk has cyclic type λ,
◦ t1, . . . , tk generate Sn, and
◦ k = n+ `− 2.

The number of nifty k-tuples is

n`−3 k!n!
∏
i≥1

1

mi

(
ii

i!

)mi

.

There’s a lot to unpack here. First up: The number n + ` − 2 is the minimum number of
transpositions needed to satisfy the first two conditions. This is not obvious; if you want, you can
try to prove it. Next up, why require that the ti generate Sn? If we didn’t require that, then
the corresponding theorem would have k = n − ` (the minimum number required to produce a
permutation with cyclic type λ) and would follow from the theorem on the long cycle—you just
treat each cycle independently. Finally, a bit of fun:

Exercise 5.22. Given a set of transpositions in Sn, we can form a labelled graph on n vertices
that contains an edge between i and j if the set of transpositions contains the transposition (i j).
Show that this tree is connected if and only if the set of transpositions generates Sn.

Kreweras complement of trees and cycle decompositions
Remember that the Kreweras complement of a noncrossing partition is an order-preserving map
from NCn to its dual. If π is a noncrossing partition, we’ll use πK to denote its Kreweras comple-
ment. You can check that if

0̂ = π0 l π1 l · · ·l πn = 1̂

is a saturated chain in NCn, then
1̂ = πK0 m πK1 m · · ·m πKn = 0̂.

So the Kreweras complement induces a bijection (in fact, an involution) on the set of saturated
chains in NCn. We have bijections from NCn to the set of decompositions of the long cycle and
the set of labelled trees; what sort of map does the Kreweras dual induce in these objects?

Problem 5.23. Ponder this.

7 This is nonstandard.
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5.6. möbius inversion
In this section, we introduce a new algebraic gadget for posets. In some ways, it’s a very far-
reaching generalization of the principle of inclusion-exclusion, so let’s recall that first.

Proposition 5.47 (Principle of inclusion-exclusion). If A1, . . . , An are finite sets, then∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ = ∑
∅6=J⊆[n]

(−1)|J|−1

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣ .
If n = 2, this can be written in the more familiar form

|A ∪B| = |A|+ |B| − |A ∩B|;

and n = 3 is

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

We’ll circle back to this, so put it to simmer aromatically on the back burner while we take a
turn toward the algebraic.

Definition 5.48. If (P,4) is a poset and x, y ∈ P with x 4 y, the interval between x and y is the
set

[x, y] := {z ∈ P : x 4 z 4 y}.

If this set is finite for every x, y ∈ P , then we call P locally finite.

Definition 5.49. Suppose (P,4) is a locally finite poset and k is a field, and let int(P ) denote
the set of intervals in P . The incidence algebra of P on k, denoted Ik(P ) or I(P ) if the field
understood, contains as elements the set of functions int(P )→ k; if f ∈ I(P ), we write f(x, y) for
f([x, y]). Given two functions f, g ∈ I(P ), their sum is the function

(f + g)(x, y) = f(x, y) + g(x, y)

and their product is
(f ∗ g)(x, y) =

∑
x4z4y

f(x, z)g(z, y).

The definition of the product of two functions is odd, but the idea is that we want to tie the
structure of the poset into the algebraic structure of I(P ); pointwise multiplication wouldn’t do
that. (Also, because P is locally finite, the sum on the right hand side is finite, so multiplication
is well-defined.)

There are two other ways of thinking about the incidence algebra.8 We can think of I(P ) as
instead the vector space kint(P ); that is, the vector space with intervals [x, y] as a basis. Multipli-
cation of these basis elements is defined as

[x, s] ∗ [t, y] =

{
[x, y] if s = t

0 otherwise.

You can check that these descriptions are the same.
There’s even one more, if P is finite: List the elements in some order x1, . . . , xn so that i < j

whenever xi < xj . (This is called a linear extension of P .) Then we can make any function

8 Incidentally,9I(P ) is an algebra in the commutative algebra sense of the word. We’ll see soon that I(P ) has an
identity element δ, so the map k → I(P ) given by a 7→ aδ is a ring homomorphism that makes I(P ) into a k-algebra.
If this makes no sense to you, then you can happily ignore it.
9 Ha!
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f(x, y) ∈ I(P ) can be written as a matrix
(
f(x, y)

)
x,y∈P , where f(x, y) = 0 if x 64 y. Each of

these matrices is upper-triangular, so in this way we can embed I(P ) into the matrix ring kn×n.
For example, if P is the Boolean lattice B2, we can list its elements as ∅, {1}, {2}, {1, 2}, and the
elements of I(P ) correspond to matrices of the form

∗ ∗ ∗ ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗

 .

Moreover, if A and B are the matrices corresponding to f, g ∈ I(P ), respectively, then AB is the
matrix corresponding to f ∗ g.

So we have three different ways of looking at this incidence algebra, and each of them is useful
at different times. The matrix perspective, for example, makes it patently clear that I(P ) has an
identity element: the function corresponding to the identity matrix.

Definition 5.50. The delta function δ ∈ I(P ) is defined

δ(x, y) =

{
1 if x = y

0 otherwise.

Proposition 5.51. The delta function is the identity element of I(P ).

Now that we have an identity element, we can ask which elements of I(P ) have inverses. Again,
the matrix perspective helps: An upper triangular matrix is invertible if and only if every diagonal
entry is nonzero. This means that if f ∈ I(P ) is invertible, then necessarily f(x, x) 6= 0 for every
x ∈ P . But this is not obviously sufficient: Matrices in I(P ) have entries above the diagonal which
must also be zero (as in the example with B2 above), and it’s not clear that matrix inversion
preserves this property.

In fact it does, when these 0-positions are determined by a poset, at least; this is the content
of the next theorem.

Theorem 5.52. For each element f ∈ I(P ), the following are equivalent:
1. f has a left inverse.
2. f has a right inverse.
3. f has a two-sided inverse.
4. f(x, x) 6= 0 for every x ∈ P .

Proof . We have already seen that each of the first three conditions implies the fourth. Now we
show that the fourth implies the rest. So: If f(x, x) 6= 0 for every x ∈ P , we can define the function
g ∈ I(P ) by

g(x, y) = −f(x, x)−1
∑

x≺z4y

f(x, z)g(z, y)

if x ≺ y and g(x, x) = f(x, x)−1. (If x � y, then of course h(x, y) = 0.)10 By rearranging, we
get (f ∗ g)(x, y) = 0 whenever x 6= y, and (f ∗ g)(x, x) = 1 for every x ∈ P . In other words,
f ∗ g = δ, so f has a right inverse. A similar argument shows that f has a right inverse h. Since
h = h ∗ f ∗ g = g, we see that f has a two-sided inverse.

Now we’ll zero in on one particular element in the incidence algebra.

10 This particular definition might seem mysterious, but it’s not meant to be: It’s exactly what you get by assuming
that f has a right inverse, writing out the formula f ∗ g, and solving for g.
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Definition 5.53. The zeta function of I(P ) is

ζP (x, y) =

{
1 if x 4 y

0 otherwise.

We write ζ(x, y) when the poset is understood.

Exercise 5.24. Show that ζ2(x, y) is the number of elements in the interval [x, y].

Suppose we have a function f : P → k. We can turn this into an element of the incidence
algebra by setting f̄(x, y) = f(x) if x 4 y and 0 otherwise. In this case,

(ζ ∗ f̄)(x, y) =
∑

x4z4y

f̄(z, y) =
∑

x4z4y

f̄(z).

So ζ is acting as a kind of discrete integral; if we were fanciful, we could write

(ζ ∗ f̄)(x, y) =
[x,y]

f(z) dz.

Of course, we are fanciful, which is why we wrote it.
Anyway, back to the zeta function. Since ζ(x, x) = 1 for every x ∈ P , it’s invertible. Its

inverse is called the Möbius function of P ; it’s denoted µP or simply µ. This function leads us to
a very important tool. (It’s the title of this section, after all.) Let’s call a poset downward finite
if {y ∈ P : y 4 x} is finite for every x ∈ P .11

Theorem 5.54 (Möbius inversion). Suppose that P is a downward finite poset.12 If f, g : P → K,
then

g(y) =
∑
x4y

f(x) if and only if f(y) =
∑
x4y

g(x)µ(x, y).

Proof . Form a new poset P̂ by adding a minimum element 0̂ to P . We define two functions
f̂ , ĝ ∈ I(P̂ ) by

f̂(x, y) =

{
f(y) if x = 0̂
0 otherwise

}
and ĝ(x, y) =

{
g(y) if x = 0̂
0 otherwise

}
.

Then g(y) =
∑
x4y f(x) if and only if ĝ = f̂ ∗ ζ; and f(y) =

∑
x4y g(x)µ(x, y) if and only if

f̂ = ĝ ∗ µ. (Verify this!) But we know that ĝ = f̂ ∗ ζ if and only if f̂ = ĝ ∗ µ, which finishes the
proof.

Sometimes it’s useful to reverse the inequality symbols. Then we get this:

Theorem 5.55 (Möbius inversion, dual). Suppose that P is an upward finite poset.13 If f, g : P →
K, then

g(y) =
∑
x<y

f(x) if and only if f(y) =
∑
x<y

g(x)µ(x, y).

Proof . This statement is true if and only if Theorem 5.54 is true in the dual poset of P .

In Enumerative Combinatorics, Stanley provides a more algebraic proof of Theorem 5.54.

11 The standard way of describing this is that “every principal order ideal of P is finite.”
12 This is just so that the sums make sense.
13 That is, {y ∈ P : y < x} is finite for every x ∈ P .
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It turns out that we can continue the calculus analogy that was gestured at before. Given
a, b ∈ P with a 4 b and a function f : P → k, let’s formally define a “discrete integral” as

b

a

f(z) dz =
∑
a4z4b

f(z),

and a “discrete derivative” as (
Daf

)
(y) =

∑
a4z4y

f(z)µ(z, y).

Then, noting that a is the minimum element in the interval [a, b] and applying Theorem 5.54 to
the subposet [a, b] ⊆ P , we get

f(y) = Da

y

a

f(z) dz and g(y) =
y

a

(
Dag

)
(z) dz.

These are some kind of discrete analogue of the fundamental theorems of calculus. You could go
farther, developing a product and quotient rule, integration by parts, and so on, but (as far as I
can tell) no one has done that, except in the very special case of the poset (Z,≤), which we’ll see
more of in a bit. This is not to be confused with the other idea of calculus on posets.

Let’s get back to Möbius inversion writ large. To apply Theorem 5.54 in concrete scenarios,
and to see why inclusion-exclusion is actually a special case, we’ll have to be able to calculate
values of the Möbius function.

5.7. the möbius function
Already in Theorem 5.52, we can see the seeds for a formula for a recurrence relation for the
Möbius function.
Proposition 5.56. The values of the Möbius function are given by the recurrence µ(x, x) = 1 for
all x ∈ P and

µ(x, y) = −
∑

x≺z4y

µ(z, y) = −
∑

x4z≺y

µ(x, z)

if x ≺ y.
Proof . The first sum comes from expanding out the expression for ζ ∗ µ = δ; the second comes
from expanding out µ ∗ ζ = δ.

This is enough to calculate the Möbius function of some very simple posets.
Example 5.57. The Möbius function on P = (Z,≤) is

µ(x, y) =


1 if x = y

−1 if y = x+ 1

0 otherwise.
To prove this, just calculate using Proposition 5.56. The same formula hold for any finite chain. ♦

Let’s go back to the discrete calculus we defined before for the special case (Z,≤). Since we
know the Möbius function explicitly, we find that(

Daf
)
(y) =

∑
a≤z≤y

f(z)µ(z, y) = f(y)− f(y − 1)

so long as a < y. On Z, then, we can define the discrete derivative of a function f : Z → k by
∆f(n) = f(n) − f(n − 1), which no longer depends on any base point. (This should hopefully
appear like a natural approximation of a derivative on the discrete set Z.) In this case, the analogy
with calculus has been carried even further; see these notes for a primer.

To calculate more complex lattices, we’ll need more tools. Here’s a simple one.
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Definition 5.58. If (P,4P ) and (Q,4Q) are posets, their product poset (P × Q,4P×Q) has the
partial order defined by (a, b) 4P×Q (c, d) if and only if a 4P c and b 4Q d.

Proposition 5.59. If P and Q are locally finite posets, then µP×Q
(
(a, b), (c, d)

)
= µP (a, c) ×

µQ(b, d).
Proof . Note that I(P ×Q), considered as a k-algebra, is generated by the elements

[
(a, b), (c, d)

]
with a 4P c and b 4Q d, that is, with [a, c] ∈ I(P ) and [b, d] ∈ I(Q). This shows that I(P ×Q) ∼=
I(P ) ⊗k I(Q). It’s easy to check that this maps sends ζP×Q to ζP ⊗ ζQ; taking inverses, we get
that µP×Q 7→ µP ⊗ µQ. Evaluating at the interval

[
(a, b), (c, d)

]
in P ×Q finishes the proof.

If this proof is a little too algebra-heavy for you, Stanley also provides a more straightforward
proof by calculation.

Corollary 5.60. The Möbius function of the Boolean lattice Bn is given by

µ(S, T ) = (−1)|T\S|

if T ⊇ S.
Proof . Let P2 denote the lattice with 2 elements 0̂ < 1̂. Then Bn is isomorphic to (P2)

n via the
isomorphism that sends a set S to the vector vS ∈ {0, 1}n with vSi = 1 if and only if i ∈ S. The
product formula tells us that

µ(S, T ) = (−1)‖v
T−vS‖1 = (−1)|T\S|.

And now we come to the promised corollary: inclusion-exclusion.

Proof of the principle of inclusion-exclusion. Let A1, . . . , An be finite sets, and set X =
⋃n
i=1Ai.

We define two functions f, g : Bn → R by

f(J) =

∣∣∣∣ ⋂
j∈J

Aj

∣∣∣∣ and g(J) =

∣∣∣∣( ⋂
j∈J

Aj

)
∩
( ⋂
j /∈J

(X \Aj)
)∣∣∣∣.

You can check that for any I ⊆ [n], we have f(I) =
∑
J⊇I g(I). Theorem 5.55 together with

Corollary 5.60 implies that g(I) =
∑
J⊇I(−1)|J\I|f(J) for every I ⊆ [n]. Evaluating at I = ∅, we

get
0 = g(∅) =

∑
J⊆[n]

(−1)|J|f(J).

Solving for f(∅) finishes the proof.

Number theory has its own thing called Möbius inversion.

Proposition 5.61 (Möbius inversion, number theory). Define the function µ : N→ {0,±1} by the
following rule:

µ(n) =

{
(−1)k if n is square-free and the product of k distinct primes
0 if n is divisible by a square.

For any two functions f, g : N→ k, we have

f(n) =
∑
d|n

g(d) if and only if g(n) =
∑
d|n

f(d)µ(n/d).

This, too, is a special case of our poset inversion. In particular: Let DL denote the poset of
the natural numbers ordered by divisibility (so m 4D n if m | n; we’ll just write the latter).
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Exercise 5.25. Show that DL is isomorphic to the direct sum of (N0,≤) countably many times.
(Hint: Let ek denote the element in

⊕
i∈N(N0,≤) that has 1 in its kth coordinate and 0 everywhere

else. If pk denotes the kth prime number, the map that sends m = pa1i1 · · · p
ar
ir

to
∑r
j=1 areij is an

order-preserving isomorphism.)

Exercise 5.26. Show that D is a lattice; thus the initialism DL. (What are its meet and join
operations?)

Using this correspondence, Proposition 5.59 tells us that

µDL(m,n) =

{
(−1)k if n/m is square-free and is divisible by k distinct primes
0 if m/n is divisible by a square.

So µ(m/n) = µDL(m,n), and Proposition 5.61 is nothing more than Möbius inversion applied to
the divisor lattice.

In the divisor lattice, the discrete derivative is largely independent of the base point. The
radical of a positive integer n, denoted rad(n), is the product of the distinct primes that divide it.
(So, for example, rad(180) = 2 · 3 · 5 = 30.) Let ω(n) denote the number of distinct prime factors
of n. If a ≤ rad(n), then(

Daf
)
(n) =

∑
a|d|n

f(d)µ(n/d) =
∑

q|rad(n)

(−1)ω(q)f(n/q),

since if n/d is divisible by a square, then µ(n/d) = 0. In particular, Da = D1 for every a ∈ N. So
the divisor lattice has a single discrete derivative, which we can denote simply by D, and a discrete
integral

b

a

f(k) dk =
∑
a|k|b

f(k).

Of course, this can be rephrased in terms of the isomorphic lattice N =
⊕

i∈N(N,≤). Here, x ≤ y
if xi ≤ yi for every i ∈ N. The discrete integrals and derivatives are

b

a
f(x) dx =

∑
a≤x≤b

f(x) and
(
Df)(x) =

∑
0≤z≤1x

(−1)|z|f(x− z),

where 1x is the vector with 1 in the ith coordinate if xi 6= 0 and 0 in the ith coordinate otherwise;
|z| is the number of nonzero coordinates of z.14

We know that discrete analogues of the fundamental theorems of calculus exist in this lattice.
Can this analogy be extended further? Probably, but I don’t know.

Problem 5.27. Think about this.

For fun, this Wikipedia page has yet another discrete variant of calculus.

6. hyperplane arrangements
A hyperplane arrangement is simply a collection of hyperplanes. More precisely, a hyperplane
arrangement over a field F is a collection of affine (n− 1)-dimensional subspaces of Fn.

14 We can also look at a modified derivative in the poset
⊕n

i=1(Z,≤). The discrete integral is the same as the
integral in DL, but we define the derivative as(

Df)(x) =
∑

0≤z≤1
(−1)|z|f(x − z),

where 1 is the vector with every coordinate equal to 1. If n = 1, this is the discrete calculus on Z that we mentioned
before, and if n > 1, this gives some sort of “multivariable discrete calculus.”
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6.1. graphical arrangements
From any hyperplane arrangement, we can extract a poset.

Definition 6.1. If A is a collection of hyperplanes in Fn for some field F , its intersection poset
LA consists of the nonempty intersections of hyperplanes in A ordered by reverse inclusion.

Example 6.2. Suppose that A = {H1,H2} consists of two non-parallel hyperplanes in Rn. The
intersection lattice LA looks like this:

0̂ = Rn

H2

H1 ∩H2

H1

♦

An intersection lattice is not, in general, a lattice. If it contains two parallel hyperplanes,
for example, then these two hyperplanes have no common upper bound in LA. A hyperplane
arrangement is called central if every hyperplane in the arrangment contains the origin.

Exercise 6.1. Show that the intersection poset of any central hyperplane arrangement is a lattice.

Central hyperplane arrangements are common, making intersection lattices common—the L in
LA stands for “lattice.”

Graphs parametrize a specific class of hyperplane arrangements.

Definition 6.3. Given a graph G and a field F , the graphical arrangement AG,F is the hyperplane
arrangement in FV (G) with a hyperplane He for each edge uv ∈ E(G) defined by

He = {x ∈ FV (G) : xu = xv}.

Every graphical arrangement is central, so its intersection poset is a lattice.

Example 6.4. If G is the path graph on three vertices , then the intersection lattice LAG,R is
the one that appears in Example 6.2. ♦

It turns out that LAG,F
is the same regardless of the field F . This is not true for arbitrary

arrangements: If H1 = {x : x1 = 0} and H2 = {x : x1 − 2x2 = 0}, then interpreted as hyperplanes
in Rn, the intersection lattice looks like a diamond. But over F2, these hyperplanes are the same,
and their intersection lattice looks like this:

0̂ = Rn

H1 = H2

Essentially, this is because the hyperplanes defining AG,F only depend on equality. Actually:

Proposition 6.5. LAG,F
is isomorphic to the sublattice of Πn consisting of all set partitions

{B1, . . . , Bk} such that G|Bi
is connected for every i ∈ [k].

Exercise 6.2. Prove Proposition 6.5.

This sublattice of Πn is completely independent of the field F . Because of all of this, and to
avoid triple subscripts (or even quadruple subscripts, as appears in LAKn,R), we abbreviate LAG,F

by simply LG.

57



6. hyperplane arrangements

6.2. möbius functions, chromatic polynomials, and hyperplane ar-
rangements, oh my!

We’ll start with something completely different.

Definition 6.6. A q-coloring of a graph G is a function V (G)→ [q]. A coloring ϕ is called proper
if ϕ(u) 6= ϕ(v) whenever uv ∈ E(G). The number of proper q-colorings of G is denoted χG(q).

The chromatic number of G is the least q such that χG(q) > 0, for example. It seems like χG
could be any sort of function, but surprisingly, it has a fairly simple structure.

Theorem 6.7. For every graph G, there is an integer polynomial fG such that χG(q) = fG(q) for
every q ∈ N.

For this reason, χG is called the chromatic polynomial of G.

Proof of Theorem 6.7. We use the so-called deletion-contraction method. Given an edge e ∈ E(G),
let G \ e denote the graph obtained by deleting the edge e, and let G/e denote the graph obtained
by contracting e, that is, by deleting e and joining its two endpoints into a single vertex.

For every q ∈ N, we have
χG\e(q) = χG(q) + χG/e(q).

To see this, consider the q-colorings of G\e. If the endpoints of e are have the same color, then this
is a valid coloring of G/e. If the endpoints of e have different colors, then this is a valid coloring
of G. (And the reverse inclusions are true, as well.) This shows the equality. Rearranging, we get

χG(q) = χG\e(q)− χG/e(q),

where G \ e and G/e both have one fewer edge than G. We can finish the proof by inducting on
the number of edges, so long as we know that χG is a polynomial whenever G has no edges. But
this is clear: If G has no edges, every q-coloring is proper, so χG(q) = q|V (G)|.

Corollary 6.8. χG is a monic polynomial whose constant term is 0.
Proof . The chromatic polynomial for every edgeless graph is divisible by q, which implies that χG
is divisible by q for any graph G. So its constant term is 0.

Suppose that G has n vertices. Any q-coloring V (G) → [q] that is injective is proper, so
χG(q) ≥ qn = q(q − 1) · · · (q − n+ 1). On the other hand, χG(q) ≤ qn, so

lim
q→∞

χG(q)

qn
= 1,

which shows that the leading term of χG(q) is qn.

A coloring of the complete graph Kn is proper precisely when it is injective. Therefore χKn(q) =
qn = q(q − 1) · · · (q − n+ 1). If we write

qn =

n∑
k=1

s(n, k)qk,

the coefficients s(n, k) are called the Stirling numbers of the first kind.

Exercise 6.3. Show that s(n, k) = (−1)n−1
∣∣{σ ∈ Sn : σ has k cycles}

∣∣.
This means that s(n, 1) = (−1)n−1(n− 1)!, so [q]χKn

(q) = (−1)n−1(n− 1)!. So far, so good.
What does all of this have to do with the Möbius function? Well,

Proposition 6.9. µΠn(0̂, 1̂) = (−1)n−1(n− 1)!.
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6. hyperplane arrangements

Recall that Πn is the partition lattice of [n].

Proof . As a preliminary, note that if you pick any element π ∈ Πn with k blocks, the interval
[π, 1̂] is isomorphic to Πk, since every element in the interval is a set partition of the blocks of π.
(In fact, every interval [σ, π] in Πn is isomorphic to a product of partition lattices: If π has blocks
L1, . . . , Lr and there are ki blocks of σ inside Li, then [σ, π] ∼= Πk1 × · · · ×Πkr .)

The proof now proceeds by induction. For n = 1, we have 1̂ = 0̂, so µ(0̂.1̂) = 1. Now suppose
the proposition is true for all k < n with n > 1. From the Möbius recurrence formula we have

µΠn(0̂, 1̂) = −
∑
π�0

µΠn(π, 1̂).

If π has k blocks, then [π, 1̂] ' Πk, so µΠn
(π, 1̂) = µΠk

(0̂, 1̂) = (−1)k−1(k − 1)!. There are S(n, k)
elements of Πn that have exactly k blocks, so

µΠn
(0̂, 1̂) = −

n−1∑
k=1

(−1)k−1(k − 1)!S(n, k).

To prove the theorem, we need to show that
n∑
k=1

(−1)k−1(k − 1)!S(n, k) = 0.

Ignoring the sign for the moment, the terms on the left side count the number of cyclically ordered
set partitions of [n]. To show that the sum is 0, we need to show that there are exactly as many
even cyclically ordered set partitions as there are odd. Define a map ϕ on the set of cyclic set
partitions such that
◦ if {n} is a block in the cyclic partition π, then ϕ(π) is the cyclic partition formed by joining
{n} with the block that immediately precedes.

◦ if {n} is not a block in π, then ϕ(π) is obtained by deleting n from the block it is in and
inserting the new block {n} between the block that formerly contained n and its successor
in the cyclic ordering.

Then ϕ is an involution on cyclic partitions and interchanges even and odd blocks.
Alternatively, taking t = −1 in Corollary 4.23 shows immediately that the sum vanishes. Either

way, the sum vanishes, which completes the proof.

Remember that the intersection lattice of the graphical arrangement of Kn is isomorphic to Πn.
This suggests that there’s a connection between Möbius functions and the chromatic polynomial.
Indeed there is.

Proposition 6.10. For any graph G with n vertices and any prime power q, we have

χG(q) =
∣∣∣Fnq \⋃

H∈AG

H
∣∣∣.

Proof . Just unravel the definitions. Every point in Fnq represents a q-coloring of G; this coloring
is improper precisely when it lies inside one of the hyperplanes in AG.

And here it is:

Theorem 6.11. For every graph G and every positive integer q, we have

χG(q) =
∑
T∈LG

µLG
(0̂, T )qdimT ,

where dimT denotes the dimension of the space T .
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Proof . First assume that q is a power of a prime. We use Möbius inversion on the lattice LG,
where we consider the graphical arrangement AG over the finite field Fq. Define f, g : LG → N by
f(S) = |S| and g(S) =

∣∣S \⋃T(S T
∣∣. Then

f(S) =
∑
T⊆S

g(T ),

so by Möbius inversion
g(S) =

∑
T⊆S

µLG
(S, T )f(T ).

From Proposition 6.10, we have

χG(q) = g(0̂) =
∑
T∈LG

µLG
(0̂, T )qdimT .

This is an equality of polynomial values that holds for infinitely many inputs, so it is an equality
on the level of polynomials, as well. Thus it holds for any value of q.

6.3. characteristic polynomial of hyperplane arrangements
Using Theorem 6.11 as inspiration, we can define a polynomial for any hyperplane arrangement.

Definition 6.12. If A is a collection of hyperplanes (not necessarily central) in Fn, its character-
istic polynomial is

χA(t) =
∑
S∈LA

µLA(0̂, S)t
dim(S).

Alright. It’s a polynomial. Conveniently, “chromatic” and “characteristic” both begin with ch,
so χ works for both. And at least one interpretation remains the same.

Proposition 6.13. If q is a power of a prime and A is a hyperplane arrangement in Fnq , then

χA(q) =
∣∣∣Fnq \⋃

H∈A
H
∣∣∣.

Exercise 6.4. Prove Proposition 6.13 by following the proof of Theorem 6.11.

Typically, we think of hyperplane arrangements in Rn. For these arrangements, it’s not very
useful to count the points that aren’t in the hyperplanes (there are, well, uncountably many). It’s
possible, however, that we can obtain information about a real hyperplane arrangement by passing
to a finite field.

Every hyperplane H ⊆ Rn has the form
H = {x ∈ Rn : a1x1 + · · · anxn = c}

for some a1, . . . , an, c ∈ R; H is called rational if each of these numbers is. If H is rational, then by
multiplying by a common denominator or dividing by the least common multiple, we can ensure
that every coefficient in this equation is an integer and that gcd(a1, . . . , an, c) = 1. This is a unique
expression for the elements of H, up to multiplication by −1.

Once we have an expression for hyperplanes in terms of integers, it’s easy to get a hyperplane
arrangement in Fnq from a hyperplane arrangement A in Rn: Just interpret these integers as
elements of Fq. The resulting hyperplane arrangement is denoted A(Fq). When passing to a finite
field, some information might naturally be lost; the discussion after Example 6.4 shows exactly this
happening. Nevertheless, in a mathematician’s sense of the the phrase, this almost never happens,
at least for the lattice structure.
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6. hyperplane arrangements

Proposition 6.14. For all but finitely many primes p, LA ∼= LA(Fpr ).

This proof uses a bit of linear algebra; see Appendix A.2 for a review.

Proof of Proposition 6.14. Let A = {H1, . . . , Hm} with
Hi = {x ∈ Rn : ai,1x1 + · · ·+ ai,nxn = ci}

for every i ∈ [m]. Then Hi1 ∩ · · · ∩Hik is nonempty if and only if, setting A = (air,j)1≤r≤k,1≤j≤n
and (cir )1≤r≤k, there is a solution to the equation Ax = c. This is true if and only if rank(A|c) =
rank(A), in which case the set of solutions has dimension n − rank(A). The information about
the ranks of the row-submatrices of A and [A|c] can be obtained solely from the information on
which minors of [A|c] are nonzero. This means that the lattice structure is preserved if the set of
vanishing minors does not change.

There are only finitely many primes that divide the minors of [A|c]; if p is any other prime,
then the lattices LA and LA(Fpr ) are the same.

We can see in a more rigorous way from this proof why graphical arrangements are independent
of the base field: the matrix A has exactly one 1 and one −1 in every row. And:

Problem 6.5. Show that, in a matrix with exactly one 1 and one −1 in each row, every minor has
value 0, 1, or −1.

But here is the upshot.

Theorem 6.15. For any rational hyperplane arrangement A = {H1, . . . , Hm} in Rn, there is a
natural number N such that for every p > N and q = pr,

χA(q) =
∣∣∣Fnq \⋃

H∈A(Fq)

H
∣∣∣.

Proof . Take N as given in Proposition 6.14. For any such q, we have LA = LA(Fq). From
Definition 6.12, the characteristic polynomials are the same. Now apply Proposition 6.13.

Techniques like this that reduce a continuous combinatorial problem to one over a finite field
are generally referred to as falling under the finite field method. Let’s continue to study hyperplane
arrangements, this time in a way that we cannot study those over finite fields.

For real hyperplane arrangements, the hyperplanes divide the ambient space into several differ-
ent regions—something that hyperplanes over a finite field do not. Instead of counting the number
of points in

∣∣∣Rn \⋃H∈AH
∣∣∣, let’s now count the number of connected components.

Definition 6.16. Given a hyperplane arrangement A in Rn, we denote by r(A) the number of
connected components of Rn \

⋃
H∈AH (also called the regions of A).

We might also count the number of bounded regions of a hyperplane arrangement. Here we
have to be a little careful: It’s possible that there are no bounded regions. (For example, if A is a
collection of parallel hyperplanes.)

Exercise 6.6. Show that if a hyperplane arrangement A ⊆ Rn has a bounded region, then the
normal vectors to the hyperplanes in A span all of Rn.

For this reason, we usually consider the number of relatively bounded regions.

Definition 6.17. Suppose that A is a hyperplane arrangement in Rn and W is the subspace of
Rn spanned by the normal vectors to the hyperplanes in A. The rank of A is the dimension of W .
A relatively bounded region of A is a bounded connected component in W \

⋃
H∈AH; we denote

the number of relatively bounded components by b(A).
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Exercise 6.7. Taking A and W as in the previous definition, show that LA and LA|W are the same
poset. (Here, A|W denotes the hyperplane arrangement in Rrank(A) ∼= W obtained by restricting
the hyperplanes in A to W .)

This information, too, is bound up in the characteristic polynomial.

Theorem 6.18 (Zaslavsky, 1975). If A is a hyperplane arrangement in Rn, then

r(A) = (−1)nχA(−1)
b(A) = (−1)rank(A)χA(1).

One proof of this theorem relies on an extension of the deletion-contraction method for graphs;
for hyperplanes, this becomes the “deletion-restriction” method. For details, see Section 3.11.2 of
Enumerative Combinatorics 1 or Lecture 2 of Richard Stanley’s notes on hyperplane arrangements.

Example 6.19. Consider the hyperplane arrangement A in R2 pictured below:

H1

H2

H3

Its intersection poset looks like this:

0̂ = R2

H1 H2 H3

H1 ∩H2 H1 ∩H3 H2 ∩H3

We can calculate the Möbius values directly: Either by the recursive formula or by noticing that
this poset is a subposet of the Boolean lattice B3. Either way, µLA(0̂, S) = −1 if S is in the middle
row and µLA(0̂, S) = 1 if S is in the top row. Looking at Definition 6.12, we find that

χA(t) = t2 − 3t+ 3.

According to Theorem 6.18, the arrangement A should have (−1)2χA(−1) = 7 different regions,
which it does. You can see visually that rank(A) = 2, so relatively bounded regions are simply
bounded regions. The arrangement should have (−1)2χA(1) = 1 of them, which it does. ♦

When specializing Theorem 6.18 to graphical arrangements, we get something quite nice.

Corollary 6.20 (Stanley, 1973). The number of acyclic orientations of a graph G with n vertices
is (−1)nχG(−1).

Exercise 6.8. Prove Corollary 6.20 by finding a bijection between the regions of A and the acyclic
orientations of G.
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6.4. the catalan arrangement
Definition 6.21. The Catalan arrangement

�������n in Rn consists of the hyperplanes whose defining
equations are xi − xj = c with c ∈ {0,±1}.

The normal vectors to the hyperplanes in
�������n span the subspace of Rn that is orthogonal to

the all-ones vector 1, so the rank of
�������n is n− 1.

Example 6.22. We can project
�������3 onto the orthogonal subspace of 1⊥ to get a visualization in

two dimensions. It looks like this:

♦

At the moment, it’s mysterious why this particular arrangement is called “Catalan.” We’ll see
why this is after we calculate its characteristic polynomial.
Proposition 6.23. χ

�������

n
(t) = t (t− n− 1)n−1, where xk is the kth falling power of x.

Proof . We use the finite field method. Fix a prime p such that Theorem 6.15 holds, so that
χ
�������

n
(p) = #

{
(x1, . . . , xn) ∈ Fnp : xi − xj 6= 0,±1 for every i, j ∈ [n]

}
.

Let’s make this more combinatorial. Imagine a necklace with p different (distinguishable) beads.
We want to count the number of ways to choose n beads in a particular order from this necklace
so that no two are of these beads are adjacent. We have something that looks like this (in the
special case p = 13, but you can surely imagine it with larger p):

1 2
3

4

5

6
78

9

10

11

12
13

Let’s call a sequence of beads where no two are adjacent separated. We can form equivalence classes
of separated sequences by rotation; every equivalence class has exactly p elements, exactly one of
which has bead 1 as its first element.

Once we know that bead 1 is in the separated sequence, the remaining beads are simply a
separated sequence of length n − 1 in the interval [3, p − 1]. Each separated set in [3, p − 1]
corresponds to exactly (n − 1)! different separated sequences. Now we’re almost done: Each
separated set in [3, p− 1] is, perhaps uninterestingly, a separated set in [2, p] that does not contain
2 or p. Such sets exactly correspond to compositions of p − n into n parts: the beads in the set
separate the p−n unchosen beads into the different components of the composition. And we know
from the twelvefold way that there are exactly

(
p−n−1
n−1

)
compositions of p− n into n parts.

Altogether, then, we have

χ
�������

n
(p) = p(n− 1)!

(
p− n− 1

n− 1

)
= p (p− n− 1)n−1.

Since this is true for infinitely many integers p, it is an equality of polynomials, which proves the
theorem.
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Corollary 6.24. The number of relatively bounded regions of the Catalan arrangement
�������n is

n!Cn.
Proof . Apply Theorem 6.18 to get

r(
�������n) = (n+ 2)(n+ 3) · · · (2n) = n!

1

n+ 1

(
2n

n

)
.

Exercise 6.9. The braid arrangement in Rn contains the hyperplanes defined by the equations xi−
xj = 0. (It is the graphical arrangement of the complete graph Kn.) Determine its characteristic
polynomial and show that it has n! regions.

It’s also possible to see that the braid arrangement has n! regions without recourse to Za-
slavsky’s theorem. The region a point x = (x1, . . . , xn) lies entirely depends on which side of each
hyperplane that the point lies on. For the hyperplane determined by xi − xj = 0, all the points
on one side satisfy xi < xj ; all the points on the other satisfy xi > xj . The region that x lies in is
therefore entirely determined by the relative order of its coordinates. There are n! total orders of
n elements, and each of these orders corresponds to a region, so there are n! regions.

Notice that the Catalan arrangement contains within it the braid arrangement. Each region
of the braid arrangement is called a chamber of the Catalan arrangement. The chamber in which
x1 < x2 < · · · < xn is called the fundamental chamber . The Catalan arrangement is the same
in each chamber (because it is invariant under permutation of coordinates), so Corollary 6.24 can
be equivalently formulated as the statement that the fundamental chamber of

�������n contains Cn
regions. Our next goal is to obtain some enumerative insight into this fact.

Problem 6.10. The Shi arrangement in Rn contains the hyperplanes defined by the equations
xi − xj = c with c ∈ {0, 1}. Determine its characteristic polynomial and the number of regions
into which it divides Rn.

6.5. interval orders
Suppose that x = (x1, . . . , xn) is a point in the fundamental chamber of

�������n; that is, x1 < x2 <
· · · < xn. To determine the region of

�������n in which x lies, we need to determine on which side of
the hyperplanes it is. We know that xi − xj > 0 whenever i > j for any point in the fundamental
chamber, so the only relevant hyperplanes are the ones defined by xi − xj = 1. The region that x
lies in, then, is determined by which pairs of i and j with i > j satisfy xi − xj < 1.

To visualize this, let’s plot x1, . . . , xn on the real number line. We can draw unit intervals above
each point to visualize the inequality; the region of x is determined by which intervals overlap. For
example, for the point (0.1, 0.4, 0.8, 1.2, 1.6, 2.8), the picture looks like this:

R0.10.4 0.8 1.2 1.6 2.8

We can encode these overlaps (or lack thereof) into a poset.

Definition 6.25. Let U be a collection of intervals in R. The interval order obtained from U is
a poset whose elements are the intervals of U with the partial order I ≺ J if the interval I lies
entirely to the left of J (that is, the right endpoint of I precedes the left endpoint of J). A unit
interval order (or semiorder) is an interval order where every interval in U has length 1.

In the collection of unit intervals above, let’s label the intervals by 1, 2, 3, 4, 5, 6 according to
their left endpoint. The unit interval order derived from the collection of intervals above is

64



6. hyperplane arrangements

1 2 3

4 5

6

Much like Kuratowski’s theorem, which characterizes just two graphs as obstructions to planarity—
and many other theorems on forbidden subgraphs—interval orders have a characterization via for-
bidden subconfigurations. We say that a poset P has another poset Q as an induced subposet if
there is a set X ⊆ P such that (X,4|X) is isomorphic to Q.

Theorem 6.26 (Scott-Suppes, 1958). A poset is a unit interval order if and only if it does not
contain either of the following as induced subposets:

Theorem 6.27 (Fishburn, 1970). A poset is a unit interval order if and only if it does not contain
as an induced subposet.

See this 1993 paper of Bogart for a different proof than Fishburn’s original.
These theorems indicate that not every unit interval order is an interval order. This is indeed

the case.

Exercise 6.11. Explain why the interval order induced by this collection of intervals

R

cannot be realized as a unit interval order.

You can check, if you want, that the number of unlabelled Hasse diagrams of unit interval
orders with 1, 2, 3, and 4 elements is 1, 2, 5, and 14, respectively—a very suspicious sequence.

Theorem 6.28. There are Cn unlabelled Hasse diagrams of unit interval orders with n elements.

How to prove this? One way is to introduce something new: Given a poset (P,4) with elements
a1, . . . , an, its incidence matrix IP = (mi,j) is the n×n matrix with mi,j = 1 if ai ≺ aj and mi,j = 0
otherwise.

Problem 6.12. Prove that a finite poset P is a unit interval order if and only if its elements can
be ordered such that, in the incidence matrix IP = (mi,j), if mi,j = 1, then mr,s = 1 whenever
r ≤ i and s ≥ j. (Hint: Use Theorem 6.26.) Moreover, each unit interval order corresponds to
exactly one such matrix, and each strictly upper-triangular (0, 1)-matrix (all 0’s on the diagonal)
of this form corresponds to a unit interval order.

Once we have this result, it’s not so hard to count the number of unlabelled unit interval orders
by counting the number of these matrices. The matrices look similar to this one:

0 1 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0


If we draw the dividing line,
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0 1 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0


then rotate by 45°, we get a Dyck path with 2n steps. Problem 6.12 guarantees that this a bijection.
Notice the similarity to the proof of Proposition 5.28.

Question 6.29. Can you find a “natural” bijection (whatever this might mean) between the set
of noncrossing partitions of [n] and the set of unlabelled unit interval orders with n elements?

This still doesn’t quite explain why the number of regions in the fundamental chamber of
�������n

is Cn, since those are a particular class of labelled unit interval orders. There’s one missing step:

Exercise 6.13. Suppose that U = {I1, . . . , In} is a collection of unit intervals in R such that the
left endpoint of Ii is less than the left endpoint of Ij if and only if i < j. Show that the incidence
matrix of the interval order induced by U satisfies the properties of Problem 6.12. Then use this
along with the other results in this section to show that the number of regions in

�������n is Cn.

6.6. complex hyperplane arrangements
Let’s take this up a notch and consider hyperplane arrangements over the field of complex numbers.
Hyperplanes in Cn are defined just as they are over any field: the solutions to an equation a1x1 +
· · ·+ anxn = c with ai, c ∈ C.

These behave fairly differently from hyperplane arrangements over R. It no longer is much
use to count the number of connected components of a hyperplane arrangement, because there is
always only 1. To understand why, consider a hyperplane arrangement in C1. The “hyperplanes”
in this case are just affine subspaces of C1 of dimension 0: points. Removing a finite number of
points from C1 doesn’t disconnect it, so C1 \ A remains connected.

In general, the map a + bi 7→ (a, b) extends to a homeomorphism from Cn to R2n that takes
affine subspaces in Cn of dimension k to affine subspaces of R2n of dimension 2(k−1). Subtracting
a finite number of affine subspaces of R2n, each with dimension at most 2n−2, keeps the remaining
space connected.

So counting regions is out. Instead, we’ll turn to something more topological in nature. Every
topological space X has an associated cohomology ring H∗(X); it is a graded ring, meaning that
there is a canonical decomposition of the underlying abelian group into a direct sum

H∗(X) = H0(X)⊕ · · · ⊕Hn(X)

in a way that the multiplication respects: If x ∈ Hr(X) and y ∈ Hs(X), then xy ∈ Hrs(X).
(If X is some kind of pretty crazy space, the direct sum decomposition may not be finite.) Each
of the groups Hi(X) is actually a vector space over C and therefore isomorphic to Cβi for some
βi ∈ N called the ith Betti number of X. Betti numbers are useful algebraic invariants of topolog-
ical spaces, so they’re sometimes packaged into a single invariant called the Poincaré polynomial
PoinX(t). The Poincaré polynomial is one of the more important algebraic invariants of a space.

That’s a lot of algebra. Here’s the connection to hyperplane arrangements. Given an arrange-
ment A in Cn, let CA denote the topological space Cn \

⋃
H∈AH. The characteristic polynomial,

it turns out, is really the Poincaré polynomial in disguise.

Theorem 6.30 (Orlik-Solomon, 1980). For any hyperplane arrangement A in Cn,

PoinCA(t) = tnχA(t
−1).
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To a certain extent, this explains why the characteristic polynomial is so important in studying
hyperplane arrangements—the Poincaré polynomial is important, and the characteristic polyno-
mial is its combinatorial incarnation. Of course, this doesn’t explain why the Poincaré polynomial
is important. That’s best left for a course in algebraic topology.

Corollary 6.31. If A is a hyperplane arrangement in Rn and AC is its “complexification” (that
is, the collection of hyperplanes in Cn defined by the same equations as in A), then the number of
regions in A is equal to PoinAC(−1).
Proof . Apply Theorem 6.18.

Orlik and Solomon gave a completely combinatorial description of the cohomology ring of CA.
If you’re not interested in this, just skip the next section.

6.7. the orlik-solomon algebra
Orlik and Solomon, in 1980, gave a combinatorial basis for the cohomology ring of any com-
plex hyperplane arrangement. Here’s how it works. Start with a hyperplane arrangement A =
{H1, . . . , HN} in Cn. We start with N generators α1, . . . , αN . The product of two generators,
denoted ∧, satisfies the following rules:

1. αi ∧ αi = 0 for all i ∈ [N ].
2. αi ∧ αj = −αj ∧ αi if i 6= j.
3. If

⋂m
r=1Hir = ∅, then αi1 ∧ · · · ∧ αim = 0.

4. If
⋂m
r=1Hir = ∅ and the normal vectors to Hi1 , . . . , Him form a minimal linearly dependent

set, then:
m∑
r=1

αi1 ∧ · · · ∧ αir−1
∧ αir+1

∧ · · · ∧ αim = 0.

The C-algebra generated by α1, . . . , αN modulo these relations is the Orlik-Solomon algebra,
denoted OSA. The central result is this:

Theorem 6.32 (Orlik-Solomon, 1980). The algebra OSA is isomorphic to the cohomology ring of
CA = Cn \

⋃
H∈AH.

If you know anything about de Rham cohomology, the isomorphism to the de Rham cohomology
ring is given by

αi 7→ d log
(
hi(x)− ci

)
=
d
(
hi(x)− ci

)
hi(x)− ci

,

where Hi is defined by the equation hi(x) = ci.

6.8. new formulas for the characteristic polynomial
Let’s get back to real hyperplane arrangements. By this point, you may not be surprised that the
characteristic polynomial has been studied from various points of view. Here is another.

Definition 6.33. Let A = {H1, . . . , HN} be a hyperplane arrangement in Rn. A subset I ⊆ [N ]
is called central if

⋂
i∈I Hi 6= ∅. The rank of I is rank(I) = dim

(
span(vi : i ∈ I)

)
. By convention,

the empty set is central.

Whitney’s theorem gives a formula for the characteristic polynomial in terms of the central
subsets of a hyperplane arrangement.
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Theorem 6.34 (Whitney’s theorem). If A is an arrangement of N hyperplanes in Rn, then

χA(t) =
∑
I⊆[N ]
I central

(−1)|I|tn−rank(I).

We’ll prove this later for now, see how it transforms region-counting:

Corollary 6.35. If A is an arrangement of N hyperplanes in Rn, then

r(A) =
∑
I⊆[N ]
I central

(−1)|I|−rank(I) and b(A) =
∑
I⊆[N ]
I central

(−1)|I|.

Proof . Apply Theorem 6.18.

Example 6.36. Consider the following arrangement in R2.

H1 H2

H3

Every collection of hyperplanes intersects, so every collection is central. Following Theorem 6.34,
each of the singleton subsets of [3] contributes −t to the characteristic polynomial; the pairs each
contribute 1; the whole set contributes −1; and the empty set contributes t2. So

χA(t) = t2 − 3t+ 3− 1 = t2 − 3t+ 2.

You can check that this is indeed the characteristic polynomial of A by using its intersection lattice:

0̂ = R2

H1 H2 H3

H1 ∩H2 ∩H3

♦

We can see from Example 6.36 that some of the terms in the sum over central subsets might
cancel with each other; in other words, the formula of Theorem 6.34 is not subtraction-free.

Whitney’s theorem can be derived as a corollary of a general theorem about Möbius functions
on lattices.

Theorem 6.37 (Crosscut theorem). Suppose that L is a finite lattice and X is a subset of elements
of L such that

1. 0̂ /∈ X and
2. if y ∈ L \ {0̂}, then there is an x ∈ X for which y < x.

If nk denotes the number of k-element subsets of X whose join is 1̂, then

µL(0̂, 1̂) =

|X|∑
k=0

(−1)knk.

An element of a lattice is called an atom if it covers 0̂. For intuition, notice that any set X
that satisfies the crosscut conditions must include every atom. In fact, X satisfies the crosscut
conditions if and only if it contains every atom.
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Example 6.38. In the Boolean lattice Bn, the singleton sets are the atoms. Take X to be the
collection of atoms; how many ways are there to write 1̂ = [n] as the join of k singleton sets?
Exactly one way, if k = n, and exactly 0 ways if k < n. So µBn

(0̂, 1̂) = (−1)n. ♦

Exercise 6.14. Use the crosscut theorem to calculate µLq(n)(0̂, 1̂), where Lq(n) is the poset of
subspaces of Fnq .

For a proof, see Enumerative Combinatorics, Section 3.9. Stanley’s proof is interesting: He
defines a new algebra structure using the lattice and its Möbius function and it then simplifies to
a few calculations. I encourage you to take a look.

As for us, we’ll use the crosscut theorem to prove Whitney’s.

Proof of Theorem 6.34 from crosscut. For each S ∈ LA, define L(S) = {T ∈ LA : T 4 S}. This
is a lattice. (Geometrically, it’s the lattice of subspaces in L that contain S.) The collection of
hyperplanes {H ∈ A : H ⊇ S} is the collection of atoms of L(S); applying the crosscut theorem,
we get

µLA(0̂, S) = µL(S)(0̂, 1̂) =
∑
k

(−1)knk =
∑
k

∑
H∈(Ak)⋂
H=S

(−1)k =
∑
H⊆A⋂
H=S

(−1)|H|.

Now insert this evaluation into the definition χA(t) =
∑
S∈LA

µLA(0̂, S)t
dimS and use the fact that

dim(S) = n− rank(S). The resulting formula is Theorem 6.34.

Whitney’s theorem significantly reduces the number of terms required to calculate the charac-
teristic polynomial of a hyperplane arrangement. But you can ask: Is it possible to do any better?
We saw already that some of the terms in the some might cancel, so the formula may still be
somewhat redundant. (In fact, it might be significantly redundant; the hyperplane arrangement
in R2 that consists of 1000 lines through the origin will have a lot of cancellation.) Reducing the
redundancy is exactly the goal of the No Broken Circuits theorem.

Definition 6.39. Let A = {H1, . . . , HN} be a hyperplane arrangement in Rn, and let vi be a
normal vector to Hi for each i ∈ [N ]. A central subset I ⊆ [N ] is
◦ independent if {vi}i∈I is linearly independent;
◦ a circuit if {vi}i∈I is linearly dependent but any proper subset of it is independent;
◦ a broken circuit if it can be written as I = C \ {m} where C is a circuit and m = minC.

A subset I ⊆ [N ] is called an NBC subset (for “no broken circuit”) if it is central and it does not
contain any broken circuits as subsets.

Theorem 6.40 (No Broken Circuits theorem). If A = {H1, . . . , HN} is a hyperplane arrangement
in Rn, then

χA(t) = (−1)n
∑
I⊆[N ]

I is NBC

tn−|I|.

In other words,
PoinA(t) =

∑
I⊆[N ]

I is NBC

t|I|.

And here we have a completely subtraction-free formula!

Proof of Theorem 6.40. From Whitney’s theorem, we have

χA(t) =
∑
I⊆[N ]
I central

(−1)|I|tn−rank(I).
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If we can construct a sign-reversing and rank-preserving involution on central subsets that contain
a broken circuit, this will show that all the terms except the ones corresponding to NBC subsets
cancel.

So, here’s the map: If given a set I ⊆ [N ], let m(I) be the greatest element of [N ] such that I
contains a broken circuit C\{m} (the element m need not be in I). We then define ϕ(I) = I

a
{m};

that is, ϕ(I) = I ∪ {m} if m /∈ I and ϕ(I) = I \ {m} if m ∈ I. Since m is a member of a circuit,
ϕ preserves rank; it changes the number of elements in I by 1, so it also reverses sign.

To show that ϕ is an involution, we need to prove that m(I) = m
(
ϕ(I)

)
. Suppose that

m = m(I) ∈ I (the other case is similar). Since every broken circuit of ϕ(I) is a broken circuit of
I, we have m

(
ϕ(I)

)
≤ m(I). On the other hand, if C \{r} is a broken circuit of I with r ≥ m, then

every element of C is greater than m; therefore C \ {r} ⊆ ϕ(I). It follows that m(I)|> m
(
ϕ(I)

)
;

so they are equal. Since m(I) = m
(
ϕ(I)

)
, we have ϕ2(I) = I, which finishes the proof.

Exercise 6.15. To calculate the characteristic polynomial of the braid arrangement, we need to
count NBC subsets of the edges of Kn, the complete graph on the vertex set [n]. So order the
edges of Kn lexicographically: If ij and uv are edges with i < j and u < v, then ij ≺ uv if either
(i) i < u or (ii) i = u and j < v. What is an NBC on the set of edges of Kn with respect to the
lexicographic ordering?

7. matroids

7.1. what are they?
Let’s start, as usual in a new chapter, with some definitions.

Definition 7.1. A collection B of nonempty subsets of a given set E satisfies the exchange axiom
if, for every pair of sets I, J ∈ B and every i ∈ I, there is a j ∈ J so that (I \ {i}) ∪ {j} ∈ B. A
matroid of rank d is a pair (E,B), where E is a (finite) set, the so-called ground set of M , and
B is a collection of subsets of E, each with cardinality d, that satisfies the exchange axiom. The
elements of B are called the bases of M . A subset I ⊆ E is called independent if it is contained in
some basis and dependent otherwise. A minimally dependent set is called a circuit.

At first sight, the exchange axiom seems a contrived condition. The best way to think of it, to
my mind, is to consider it an abstraction of linear independence. If you have a vector space V and
two bases {u1, . . . , un} and {v1, . . . , vn}, then whenever you remove a vector ui from the first basis,
you can find a vector vj in the second basis to replace it and maintain the linear independence and
spanning properties. Seen from a mile away, this is the exchange axiom.

Exercise 7.1. Suppose that M = (E,B) is a matroid and I, J are independent sets in M with
|J | > |I|. Show I and J satisfy the augmentation property; that is, there exists an element j ∈ J
such that I ∪ {j} is independent.

Matroids can be defined in many different ways; fundamentally, it is a collection of subsets of
a given set that generalizes independence. The augmentation property provides a different way to
characterize matroids.

Exercise 7.2. Suppose that I is a collection of subsets of a finite ground set E such that
◦ ∅ ∈ I,
◦ if I ∈ I and J ⊆ I, then J ∈ I; and
◦ if I, J ∈ I and |J | > |I|, then I and J satisfy the augmentation property.
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We call an element I ∈ I a basis if it is maximal: I ∪{x} /∈ I for every x ∈ E \ I. Show that every
basis of I has the same cardinality. Then show that the collection of bases satisfies the exchange
axiom.

What have matroids got to do with what we’ve been doing?

Example 7.2. Let A = {H1, . . . , HN} be a hyperplane arrangement in Fn and v1, . . . , vN be
normal vectors to these hyperplanes, respectively. We can form a matroid MA on the set [N ] by
declaring {i1, . . . , in} ∈ B if and only if {vi1 , . . . , vin} is a basis of Fn. ♦

A matroid M is isomorphic to another matroid N if there is a bijection f : M → N such that
f(I) is independent in N if and only if I is independent in N . A matroid M is realizable over a
field F if there is a hyperplane arrangement over F whose matroid is isomorphic to it.

We can also think of this more algebraically. Given the set {v1, . . . , vN} of normal vectors to
the hyperplanes in A, we can form the n × N matrix [v1v2 · · · vN ]. The set I ⊆ [n] is a basis
of MA if and only if det(vi)i∈I 6= 0. In fact, this has no need for a hyperplane arrangement; it
depends only on a set of vectors. For this reason, realizable matroids are often defined in terms of
a collection of vectors.

Exercise 7.3. Let S be a collection of points in Rn. A subset {x1, . . . , xm} ⊆ S is called affinely
dependent if there are real numbers α1, . . . , αm ∈ R such that

∑m
i=1 αi = 0 and

∑m
i=1 αixi = 0.

The matroid MS has S as a ground set and all affinely independent sets as, well, independent sets.
(i) The affine hull of S is the smallest affine subspace (translation of a linear subspace) that

contains S. Show that S is affinely independent if and only if the affine hull of S \ {x} is
strictly contained in the affine hull of S for every x ∈ S. (This part is not necessary for the
following parts, but it provides a good visualization of affine (in)dependence. For another
description, see this post.)

(ii) Check that this is a matroid.
(iii) Show that the collection {x1, . . . , xm}, with xi = (xi,1, . . . , xi,n), is affinely independent if

and only if the collection of vectors
{
(xi,1, . . . , xi,n, 1)

}m
i=1
⊂ Rn+1 is linearly independent.

(iv) A matroid M is called affinely realizable if there is a point set S ⊂ Rn such that M ∼= MS .
Show that a matroid is affinely realizable if and only if it is realizable over R.

One nice thing about affine realizability is that it’s easier to draw points than it is to draw
vectors.

Example 7.3. Consider the following collection S of points in R2:

x1

x2

x3

x4

x5

The dashed lines indicate the two affinely dependent triples {x1, x2, x3} and {x3, x4, x5}. The
bases of MS are all triples besides these two. The circuits of MS are {1, 2, 3} and {3, 4, 5}, but
also {1, 2, 4, 5}, which is dependent but contains no dependent subset. ♦

Example 7.4. Not every matroid is realizable. Consider the following diagram:

71

https://math.stackexchange.com/questions/2262258/what-does-it-mean-to-be-affinely-independent-and-why-is-it-important-to-learn


7. matroids

This diagram, which is just a visualization and not an affine realization diagram, represents the
matroid M whose ground set is the seven vertices in this diagram and whose bases are all triples
besides the ones contained in a single line (the circle is a line for the purposes of this visualization).
You can check that this is, in fact, a matroid. However, it cannot be realized over R! Since every
basis has 3 elements, if it could be realized over R, it must be realized as a point set in R2. But
that’s not possible—convince yourself of this.

However, it can be realized over F2, the collection of all nonzero vectors in F3
2, as you can see

below:
010

100 001

011110

101

111

♦

Another way to realize a matroid is via graphs.

Definition 7.5. If G is a graph, the matroid MG induced by G has ground set E(G), and a subset
of edges is independent in MG if and only if it contains no cycle. (In other words, a subset of edges
is independent if and only if it is a forest.) A matroid that is isomorphic to MG for some graph G
is called graphical.

Exercise 7.4. Suppose that G is a connected graph. Show that a set I ⊆ E(G) is a basis in MG

if and only if it is a spanning tree of G; then show that I is a circuit if and only if it is a cycle
(with no repeating vertices) in G.

Graphical matroids are a very special case of realizable matroids: They’re realizable over any
field.

Exercise 7.5. Let G be a graph with n vertices and F be a field.
(i) Suppose that G is the disjoint union of G1 and G2. Show that, if MG1 and MG2 are realizable

over F , then G is realizable over F .
(ii) We can now assume that G is connected. For each edge e ∈ E(G), let ve ∈ Fn denote the

vector whose ith and jth coordinates are 1 and −1, respectively, with every other coordinate
0. (The vector ve is a normal vector to the hyperplane in the graphical arrangement AG
corresponding to the edge e.) Show that, if I ⊆ E(G) contains a cycle, then {ve}e∈I is
linearly dependent.

(iii) Show that, if I ⊆ E(G) is a tree, then {ve}e∈I is linearly independent. (Hint: If I were
linearly dependent, say

∑
e∈I αeve = 0, then what is the coefficient αe when e is incident to

a leaf?)
(iv) Show that MG is realizable over F .

Each matroid is equipped with a function that parallels the rank of a linear (or affine) subspace.

Definition 7.6. If M = (E,B) is a matroid, the rank of a subset I ⊆ E, denoted r(I), is the size
of the largest independent subset of M contained in I.

Exercise 7.6. Show that r(I) = maxB∈B|I ∩B|.

The rank function satisfies several properties:

Proposition 7.7. If M = (E,B) is a matroid and r is the rank function on M , then
1. r(∅) = 0;
2. for every I ⊆ E and i ∈ E, we have r(I ∪ {i})− r(I) ∈ {0, 1}; and
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3. the rank function is submodular: For every I, J ⊆ E

r(I) + r(J) ≥ r(I ∪ J) + r(I ∩ J).

Exercise 7.7. Prove Proposition 7.7.

It may not be clear when the submodularity inequality would be strict. Here’s one example.
Pick two basis elements I and J of the graphical matroidMK3 . (Both I and J a pair of edges.) Then
I∪J = K3 and I∩J is a single edge, so r(I)+r(J) = 2+2 = 4, while r(I∪J)+r(I∩J) = 2+1 = 3.

Im any case, it turns out that the rank function is enough to specify the matroid.

Exercise 7.8. Suppose that E is a finite set and r : P → N0 is a function that satisfies the three
conditions of Proposition 7.7 and define I = {I ⊆ E : r(I) = I}. Show that I forms a collection
of independent sets for a matroid on E. (Hint: Use submodularity to prove: If i, j ∈ E satisfy
r(I ∪ {i}) = r(I) and r(I ∪ {j}) = r(I), then r(I ∪ {i, j}) = r(I).)

7.2. geometric lattices
Let’s connect matroids to something more familiar: posets. To do that, we’ll have to do a bit of
an excursion; bear with me.

Definition 7.8. A lattice L is
◦ atomic if every element in L is the join of a finite number of atoms. (The element 0̂ is, by

convention, the empty join.)
◦ graded if it has a rank function ρ : L→ N0 such that ρ(0̂) = 0 and ρ(x) = ρ(y) + 1 whenever
xm y.

◦ semimodular if it is graded with a rank function ρ that satisfies ρ(x)+ρ(y) ≥ ρ(x∧y)+ρ(x∨y)
for every x, y ∈ L.

◦ geometric if it is finite, atomic, and semimodular.

Example 7.9. The poset

is a graded lattice, but it is neither atomic nor semimodular. If we name the two atoms x and y,
then the two elements of L that are not atoms cannot be written as the join of x and y. Moreover,
ρ(x) + ρ(y) = 2, but x ∨ y = 1̂ and x ∧ y = 0̂, so ρ(x ∧ y) + ρ(x ∨ y) = 0 + 3 > 2. ♦

Exercise 7.9. Find an atomic lattice that is not graded. (Hint: You need only three atoms.)

Exercise 7.10. Show that the Boolean lattice Bn is geometric.

Exercise 7.11. Suppose that L is an atomic lattice with exactly n atoms. Show that L is a
sublattice of the Boolean lattice Bn.

In particular, Exercise 7.11 implies that any chain of length 3 or greater is not atomic (and
therefore not geometric). You can derive stronger consequences: A finite atomic lattice with n
generators cannot contain a path of length n+1 or greater; a finite atomic lattice with n generators
cannot have width greater than

(
n

bn/2c
)
. (The width of a poset is the size of the largest collection

of mutually incomparable elements.)
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Lemma 7.10. The intersection lattice of any (finite) central hyperplane arrangement is geometric.
Proof . The lattice is graded with the rank function of codimension. The join of LA is intersection
and the atoms of the lattice are the hyperplanes (remember that the lattice is ordered by reverse
inclusion). The lattice is atomic since the elements are defined by intersections of these hyperplanes.
You can check that the lattice is semimodular; in fact, equality holds in the semimodularity
condition.

Here’s how matroids come into the picture.

Definition 7.11. Let M be a matroid on the ground set E. A set S ⊆ E is called a k-flat if it is
a maximal subset of E with rank k; that is, if r(S) = k and r(T ) > k for every T ⊇ S. The lattice
of flats of M , denoted L(M), is the set of all flats of M ordered by inclusion.

In the independence picture, a flat corresponds to an (affine) subspace.
If you’re like me, then you might have a hard time constructing a simple example of a geometric

lattice where the semimodularity inequality is strict. Similarly, it wasn’t clear to me whether the
submodularity inequality of the rank function of a matroid could be strict when applied to flats.
Flats give a concise way to answer both questions at the same time. The uniform matroid Unk on
[n] of rank k is the matroid whose basis set consists of all k-element subsets of [n]. The lattice
L(U4

3 ) looks like this:

You’ll show that it actually is a lattice in the next exercise; for now, simply note that you can pick
two elements in the second row from the top, call them x and y, whose meet is 0̂. For these two
elements, ρ(x)+ρ(y) = 2+2 = 4 while ρ(x∧y)+ρ(x∨y) = 0+3 = 3. Similarly, in the matroid U4

3 ,
the sets I = {1, 2} and J = {3, 4} are flats and r(I)+r(J) = 4 while r(I∩J)+r(I∪J) = 0+3 = 3.

Exercise 7.12. Let’s show that L(M) actually is a lattice. Given a set I ⊆ E, let cl(I) = {i ∈ E :
r(I ∪ {i}) = r(I)} denote the closure of the set I.

1. Show that I ⊆ cl(I) and cl(I) = cl(cl I).
2. Prove that r(cl I) = r(I). (Hint: See Exercise 7.8.)
3. Prove that if J ) cl(I), then r(J) > r(I).
4. Show that I is a flat if and only if cl(I) = I.
5. Prove that if I and J are flats, then I ∩ J is a flat.
6. What are the meet and join operations of L(M)?

For kicks, I’ll note that the closure operator provides yet another way to define matroids.

Exercise 7.13. Prove that the closure operator satisfies the following property: If j ∈ cl(I ∪{i})\
cl(I), then b ∈ cl(I ∪ {j}) \ cl(J).

Exercise 7.14. Suppose that E is a finite set and cl : P(E) → P(E) satisfies the following prop-
erties for every I, J ⊆ E:
◦ I ⊆ cl(I);
◦ cl(I) = cl(cl I);
◦ if I ⊆ J , then cl(I) ⊆ cl(J); and
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◦ if j ∈ cl(I ∪ {i}) \ cl(I), then i ∈ cl(I ∪ {j}) \ cl(I).
Let I be the collection of minimal closure-generating subsets; that is, the collection of sets I ⊆ E
such that if J ( I, then cl(J) 6= cl(I). Show that I forms a collection of independent sets for a
matroid on E.

Anyway:

Proposition 7.12. Every lattice of flats is a geometric lattice.

Exercise 7.15. Prove Proposition 7.12.

A converse is true, too:

Proposition 7.13. Every finite geometric lattice is isomorphic to the lattice of flats of a matroid.
Proof . Let L be a geometric lattice and E be the set of atoms of L. Let I be the collection of
subsets of E which are join-minimal: That is, I ∈ I if and only if

∨
(I \ {i}) (

∨
I for every i ∈ I.

We will first prove that I forms the collection of independent sets for a matroid M on E; then we
will prove that L(M) ∼= L.

Suppose that I ⊆ E and i 64
∨
I. Then

∨
(I ∪ {i}) �

∨
I in L, so ρ

(∨
(I ∪ {i})

)
≥ ρ(

∨
I) + 1.

On the other hand, (
∨
I) ∧ i = 0; because L is geometric, we have

ρ
(∨

(I ∪ {i})
)
= ρ

(∨
(I ∪ {i})

)
+ ρ

((∨
I
)
∧ i

)
≤ ρ

(∨
I
)
+ ρ(i) = ρ

(∨
I
)
+ 1.

By induction, this implies that r(
∨
I) = |I| whenever I ∈ I. Conversely, if I is not join-minimal,

then it has a join-minimal subset J with
∨
J =

∨
I; then r(

∨
I) = r(

∨
J) = |J | < |I|. So I ∈ I if

and only if r(
∨
I) = |I|.

Clearly ∅ ∈ I. If J is not join-minimal, then any superset of J is not join-minimal. Contraposi-
tively, if I ∈ I is join-minimal and J ⊆ I, then J ∈ I. As for the augmentation axiom, suppose that
I, J ∈ I with |J | > |I|. This means that ρ(

∨
J) > ρ(

∨
I), so it cannot be the case that j 4

∨
I

for every j ∈ J . Therefore there is some j ∈ J such that j 64
∨
I; then ρ

(∨
(I ∪ {j})

)
= |I| + 1,

so I ∪ {j} is independent. Therefore M := (E, I) is a matroid.
Now we show that L(M) ∼= L. By our above work, the flats of M are precisely those sets of

the form F (I) = {i ∈ E : i 4
∨
I}. If j /∈ F (I), then

∨
(I ∪ {j}) �

∨
(I), so the ranks do not

match; this means that F (I) is a flat for every I ⊆ E. Conversely, any flat that contains I must
also contain F (I). These flats are in order-preserving bijection with the elements of L via the map
F (I)↔

∨
F (I) precisely because L is atomic. This shows that L(M) ∼= L.

So we have a map ϕ from finite matroids to finite geometric lattices (Proposition 7.12) and a
map ψ from finite geometric lattices to finite matroids. But they aren’t inverses! Suppose M is a
matroid with an element x such that {x} is not an independent set; then ψ(M) = ψ(M \{x}). Or,
if {x, y} is a circuit, then ψ(M) = ψ(M \ {x}). (Spend a moment figuring out why.) A matroid
is called simple if it contains no dependent singletons or pairs. If we restrict to simple matroids,
then ϕ and ψ actually are inverses.

A dependent singleton set is called a loop. The terminology derives from graphs: If e is a
loop in a graph G, then e is not contained in any independent set in MG. A coloop is a singleton
that appears in every basis. For a connected graph, an edge is a coloop if and only if removing it
disconnects the graph.

For hyperplane arrangements, the lattice of flats is something that we’ve already seen before,
just in a different guise.

Proposition 7.14. If A is a central hyperplane arrangement, then L(MA) ∼= LA.
Proof sketch. If A = {H1, . . . , HN} and vi is the normal vector to Hi, then the flats of MA
correspond bijectively to the intersections of hyperplanes in A.
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7.3. matroid polytopes
There is another way to visualize matroids that is geometric in nature rather than just in name.

Definition 7.15. Suppose M is a matroid on the ground set [n] with basis set B. We let e1, . . . , en
denote the standard basis of Rn and, for each I ⊆ [n], we set eI =

∑
i∈I ei. The matroid polytope

of M is
PM := conv(eI : I ∈ B).

If the rank of M is d, then x1 + · · · + xn = d for every x ∈ PM , so the dimension of PM is at
most n− 1, though it may be less.

The polytope of the uniform matroid Unk is the intersection of the unit cube [0, 1]n with the
hyperplane {x ∈ Rn : x1 + · · ·+ xn = k}. For U4

2 , this is the octahedron:

You can check that every every edge of this octahedron is parallel to a vector of the form
ei − ej (with i 6= j). In fact, this is true for any uniform matroid; you could use the definition of
supporting face, for example, to check this.

It is a significant theorem that this property essentially characterizes the polytopes that arise
from matroids.

Theorem 7.16 (Gelfand, Goresky, MacPherson, Serganova 1987). A convex polytope P ⊆ Rn is a
matroid polytope if and only if

1. every vertex of P is a member of the set {0, 1}n and
2. every edge of P is parallel to a vector of the form ei − ej with i 6= j.

7.4. graph duality
Let’s simplify things for a moment and go back to graphs. There is a notion of duality for
graphs that are embedded in the plane. Such graphs are called plane graphs. These are different
from planar graphs, which simply can be embedded in the plane. While a planar graph is just the
combinatorial data of vertices and edges, a plane graph is a planar graph together with a particular
embedding of it into the plane.

That probably seems somewhat pedantic, but we’ll see the reason for the distinction in a
moment. Let’s see, first, how this duality works. It’s actually rather simple. To take the dual of
a plane graph, simply draw a new vertex at some point in each face of the graph (including the
unbounded “outside face”) and then draw one edge to between two new vertices through each edge
that connects them. For example:

If you stare at this picture, you’ll realize that each graph is the dual of the other; in other
words, if you take the dual twice, you get back the same graph!

Unfortunately, the dual of a plane graph can depend on the embedding.
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Exercise 7.16. Show that the dual of the plane graph

is not isomorphic to the dual of the plane graph above, even though the two base graphs are
isomorphic.

Nevertheless, the dual operation on plane graphs is important; it can be used, for example, to
prove that, any plane graph with v vertices, e edges, and f faces (including the unbounded face)
satisfies the equality v − e + f = 2. (This is called Euler’s formula; see the plane duality proof
on David Eppstein’s page of 20 different proofs (!) of Euler’s formula.) The most useful basic
property of the dual graph is that it interchanges faces and vertices, and the edges of the dual
graph are in one-to-one correspondence with the edges of the base graph.

Let’s take this duality out for a ride.

Proper edge colorings
The chromatic polynomial counts the number of proper vertex colorings, but it also counts a
certain type of edge colorings.

Definition 7.17. Suppose that G = (V,E) is an undirected graph and let ~E denote the collection
of edges obtained by replacing each edge in G with two directed edges, one in each direction. We
write ij for the edge directed from vertex i to vertex j. An edge coloring of G with colors in an
abelian group Γ is a function f : ~E → Γ such that

1. f(ij) = −f(ji) and
2. if i1, . . . , in, in+1 = i1 is a cycle, then f(i1i2) + f(i2i3) + · · ·+ f(ini1) = 0.

If further f(ij) 6= 0 for every ij ∈ ~E, then f is called a proper edge coloring with values in Γ, or a
proper Γ–edge coloring for short.

Definition 7.17 is quite general; the usual case is Γ = Zn, which is called an n-edge coloring,
or Γ = Z or Γ = R. One way to think of it is that the label f(ij) is the displacement of the edge,
with condition 2 guaranteeing that if you travel from one vertex and eventually land back there,
then the total displacement should be 0.

Exercise 7.17. The second condition Definition 7.17 implies that the edge coloring is “independent
of path.” Suppose that f is an edge coloring of G with colors in Γ, and let i1, i2, . . . , in and
i1 = j1, j2, . . . , jm−1, jm = in be two different paths between the same vertices. Prove that∑n−1
r=1 f(irir+1) =

∑m−1
r=1 f(jrjr+1).

Chromatic polynomials satisfy the relation χG∪H(t) = χG(t)χH(t), which can be seen by
counting the number of n-colorings of G ∪H in terms of the number of n-colorings of G and H.
Since χG(t) is divisible by t for any graph G, this means that χG(t) is divisible by tc, where c is
the number of components of G.

Definition 7.18. The number of components of G is denoted κ(G). The reduced chromatic poly-
nomial of G is χ̃G(t) = t−κ(G)χG(t).

Proposition 7.19. The number of proper edge colorings of a graph G with colors in a finite group
Γ is χ̃G(Γ)
Proof . Since χ̃G∪H = χ̃Gχ̃H , it suffices to prove the statement when G is connected. Every
proper vertex coloring ϕ of G with colors in Γ induces a proper Γ–edge coloring of G defined by
(ij) = ϕ(i)− ϕ(j). The map ϕ 7→ f that sends vertex colorings to edge colorings is not injective;
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given any g ∈ Γ, the vertex coloring ϕ+g induces the same edge coloring as ϕ. On the other hand,
if f is a proper edge coloring, then choosing a color for any single vertex uniquely determines the
colors of every other vertex in G. So the map ϕ 7→ f is |Γ|-to-1, which shows that the number of
proper edge colorings of G with colors in Γ is 1

|Γ|χG(|Γ|) = χ̃G(|Γ|).

As before, the most common choice for Γ is Zn.

Flows on graphs
Now let’s dualize an edge coloring. Suppose we have a plane graph G that has a proper edge
coloring f with colors in Γ. We can take the plane dual of G to get another plane graph G∗; this
induces an edge coloring on G∗ that is not necessarily proper.

e1

e2

e3

e4

e∗1

e∗2

e∗3

e∗4

For a directed graph, the orientation of the dual edges is determined by rotating the original edge
clockwise.

Let’s define f∗ to be the edge coloring on G∗ induced by f ; that is, set f∗(e∗) = f(e), where
e∗ is the edge in G∗ that crosses the edge e in G. Since f is a proper coloring, we have f(e1) +
f(e2) − f(e3) − f(e4) = 0 (since edges e3 and e4 must be reversed to make a cycle). In terms of
f∗, this means that f∗(e∗1) + f∗(e∗2) = f∗(e∗3) + f∗(e∗4).

From the symbols, it doesn’t look like much has changed, but consider the picture. For proper
edges colorings, the sum over cycles is 0. When this is dualized, this turns into a sum over the
edges incident to a particular vertex. In other words, the dual of a proper edge coloring is a flow.

Definition 7.20. Let G be an oriented graph with directed edge set E and Γ an abelian group.
A function f : E → Γ is called a flow on G with values in Γ, or a Γ-flow for short, if∑

e+=v

f(e) =
∑
e−=v

f(e)

for every vertex v in G. The flow is called nowhere-zero if f(e) 6= 0 for every e ∈ E.

For this definition, G can be arbitrary; it need not be planar. It’s easiest to think of a flow
when Γ = R, in which case f(e) can be thought of as the amount of water flowing along edge e.
The condition

∑
e+=v f(e) =

∑
e−=v f(e) means that the amount of water flowing into each vertex

is the same as the amount of water flowing out.
As before, we can think of G as being undirected with the condition that f(ij) = −f(ji). The

flow condition can then be restated as ∑
u∈V (G)

uv∈~E

f(uv) = 0

for every vertex v ∈ V (G).
We know χ̃G(n) is the number of proper edge colorings of G with n colors; there is a corre-

sponding concept for nowhere-zero flows on G.

Proposition 7.21. There is a polynomial CG(t) such that, for each finite group Γ, the number of
nowhere-zero Γ-flows on G is CG(|Γ|).
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The polynomial in Proposition 7.21 is called the flow polynomial of G.

Exercise 7.18. Prove Proposition 7.21 using the deletion-contraction method.

The duality between colorings and flows can be formalized in terms of these polynomials:

Theorem 7.22 (Tutte). If G is a connected plane graph and G∗ is its dual plane graph, then
χ̃G = CG∗ and CG = χ̃G∗ .

7.5. matroid duality
Duality can be extended quite broadly to the setting of matroids. That might seem odd, since
non-planar graphs don’t have a plane dual. But they do—they’re just not graphs. Let’s take a
look.

Definition 7.23. Suppose that M is a matroid on E with basis set B. The dual of M , denoted
M∗, is the matroid on E in which I ⊆ E is a basis if and only if E \ I ∈ B.

You should be asking yourself: Is M∗ a matroid? And now that you’ve asked, you might as
well answer.

Exercise 7.19. Show that the bases of M∗ satisfy the exchange axiom.

While the dual of a planar graph depends on the specific embedding of that graph, matroid
duality is defined intrinsically—it depends on nothing but the matroid itself.

When we specialize to graphical matroids, we recover planar duality for graphs.

Proposition 7.24. If G is a connected plane graph and G∗ is its dual, then MG∗ ∼=M∗
G.

Proof sketch. Suppose that T is a collection of edges in G that form a spanning tree. If T ∗ denotes
the collection of edges in G∗ that do not cross any edge in T , then T ∗ is a spanning tree of G∗.

The duality exhibited in Theorem 7.22 between chromatic and flow polynomials of plane graphs
is extended to matroids by definition.

Definition 7.25. The characteristic polynomial of a matroid M is the characteristic polynomial
of its lattice of flats:

χM (t) =
∑

x∈L(M)

µL(M)(0̂, x)t
d−r(x),

where r is the rank function of M . The flow polynomial of M is, by definition, CM (t) = χM∗(t).

Since L(MA) = LA, the characteristic polynomial for matroids extends the notion for hyper-
plane arrangements.

We’ve seen a glimpse of the fact that graphical matroids have fairly nice properties; for example,
they are realizable over every field. The collection of matroids that are dual to a graphical matroid,
called the cographical matroids or dual matroids, shares many of its properties. The flow polynomial
is one visible aspect of this; let’s see another.

7.6. graphical and cographical hyperplane arrangements
Recall that, given a graph G = (V,E) with n vertices, the graphical arrangement associated to it
is AG = {He}e∈E(G), with Hij = {x ∈ Rn : xi−xj = 0}. Although we define AG in n-dimensional
space, it doesn’t really “belong” in a space so big: The normal vectors to the hyperplanes in A span
a subspace P of Rn with dimension n− κ(G). (Explicitly, if C1, . . . , Cm are the components of G
and 1Ci denotes the vector that is 1 in the coordinates j ∈ Ci and 0 elsewhere, then the subspace
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spanned by the normal vectors span(1C1
, . . . , 1Cm

)⊥.) If we consider A in this lower-dimensional
space, we get that χAG

(t) = χ̃G(t). (This is just by dividing both sides of Theorem 6.11 by tκ(G).)
Each point of P corresponds uniquely to an R–edge coloring on G by subtracting the endpoints of
each edge, and each point in P \ A is a proper edge coloring.

When we dualize, we should get a space of flows—the subspace of R|E| that consists of points
f : E → R that correspond to a flow on G. (That is, points that satisfy the flow equality.) We
know that the space of edge colorings of G is R|V |−κ(G), and we can use this to guess the dimension
of the flow space. We know from before that each edge coloring on G∗ corresponds to a flow on G
and vice versa. We also know that |V (G)| = |F (G∗)|, |E(G)| = |E(G∗)|, and |F (G)| = |V (G∗)|,
as well as Euler’s formula v − e+ f = 2. From this, we find that, at least for a connected planar
graph G, the flow space should have dimension

|V (G∗)| − 1 = |F (G)| − 1 = |E(G)| − |V (G)|+ 1.

It turns out that this is true for any connected graph. And once you have that, it’s not hard to
show that the flow space of an arbitrary graph has dimension |E(G)|−|V (G)|+κ(G). (Just use the
fact that a flow on a disconnected graph is the same as a choice of flow on each component—this
means that the flow space of a disjoint union of graphs is the same as the product of their flow
spaces.)

Now we can define a hyperplane arrangement in the flow space of G = (V,E): Take A∗
G =

{He}e∈E with
He = {f : E → R : f is a flow and f(e) = 0}.

Each point in complement of A∗
G corresponds to a nowhere-zero flow on G. Working through the

duality, one finds that MA∗
G
=MG∗ and

χA∗
G
(t) = CG(t).

Definition 7.26. An orientation of an undirected graph is called totally cyclic if every edge in the
orientation is contained in a directed cycle.
Exercise 7.20. An orientation of an undirected graph is called strongly connected if there is a
directed path from any given vertex to any other. Show that an orientation is strongly connected
if and only if it is totally cyclic.
Exercise 7.21. Recall from Exercise 6.8 that the number of regions of AG is the number of acyclic
orientations ofG. Show that the number of regions ofA∗

G is the number of totally cyclic orientations
of G. (Hint: A nonwhere-zero flow f : ~E → R induces an orientation on G by directing the edge
ij from i to j if f(ij) > 0 and from j to i if f(ji) > 0; this orientation is the same if you choose
two different flows in the same region. Now you want to show that (1) the induced orientation is
totally cyclic and (2) there is an inverse function taking totally cyclic flows to the regions of A∗

G.)
Using this result, we can apply Zaslavsky’s theorem to get

Theorem 7.27 (coStanley’s theorem). The number of totally cyclic orientations of a connected
planar graph G is |χG∗(−1)|.

If you substitute χA∗
G

or χM∗
G

for χG∗ (they’re the same anyway), then the result holds for
every graph G, not just the planar ones.

7.7. diversion: counting totally cyclic orientations
Each acyclic orientation of Kn induces a total order on the vertices, so there are exactly n! acyclic
orientations of Kn. The number of totally cyclic orientations, which I’ll denote Tn, is more difficult.
We can start by listing some numbers:

n 1 2 3 4 5
Tn 1 0 2 24 544
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This sequence is a little bizarre. No matter: The next step, of course, is the run it through OEIS
and see what you get. The first and only result, sequence A054946, is exactly the one we want:
problem solved.

Of course, some of you in the peanut gallery might moan and groan for an explicit formula,
and I’m nothing if not a people-pleaser, so let’s see what we can do for you.

Proposition 7.28. The number of totally cyclic orientations of Kn is

Tn =

n∑
k=1

∑
π=(B1,...,Bk)

(−1)k−12(
|B1|

2 )+···+(|Bk|
2
),

where the second sum ranges over all ordered set partitions of [n] with k blocks.

And that’s really the best we can do—sorry, peanut gallery. There are some asymptotics: see
this paper for a proof that the fraction of orientations of Kn that are totally cyclic is at least
1− 2n+1

2n−1 .
There are (at least) two ways to prove Proposition 7.28, and both of them boil down to the

same idea. Given an orientation of a graph G, we can define an equivalence relation ∼ on V (G),
where u ∼ v if there is a directed path from u to v and a directed path from v to u. This divides
the vertices of G into equivalence classes, called the strongly connected components of G. All of
the edges between two strongly connected components must go in the same direction. For Kn,
then, the edges that connect the strongly connected components provide a total order on the
components. The number of orientations of Kn whose strongly connected components are each
contained in a single block of the ordered set partition π = (B1, . . . , Bk) is

2(
|B1|

2 )+···+(|Bk|
2
).

Then you can apply inclusion-exclusion with the sets A(B1, B2) which consist of the orientations
whose strongly connected components each lie either wholly in B1 or wholly in B2. Some care
needs to be taken, though: A partition into four blocks can be written as the intersection of three
different two-block sets, but it can also be written as the intersection of two different two-block
sets. So some focused counting needs to be done with the coefficients in inclusion-exclusion.

The other approach leverages the stratification by number of blocks to define an exponential
generating function and chug away.

Let’s dismiss the details and focus on something rather miraculous. We can reinterpret the
number 2(

|Bi|
2 ) as the number of simple graphs whose vertex set is Bi. Using that, we get

Tn =
∑

H⊆E(Kn)

∑
ordered set par-
titions σ of the

components of H

(−1)#blocks(σ)−1.

The inner sum depends only on the number of components of H; denote that number by f
(
κ(H)

)
.

More precisely, if we set
f(k) =

∑
σ=(B1,...,Br)≤[k]

(−1)r−1,

where the sum ranges over all ordered set partitions of [k], then

Tn =
∑

H⊆E(Kn)

f
(
κ(H)

)
.

The first few values of f are
k 1 2 3 4

f(k) 1 −1 1 −1

which is highly suspicious. Indeed, we can prove that f(k) = (−1)k−1 by induction.
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Lemma 7.29. f(k) = (−1)k−1 for every k ∈ N.
Proof . Let B denote the set of ordered set partitions of [k] that do not have {k} as their final
block. We first show that ∑

σ∈B
(−1)#blocks(σ)−1 = 0. (∗)

To do this, define the function ϕ : B → B as follows: If, in the ordered set partition σ ∈ B, the
element k is the only element in its block, then ϕ(σ) is the ordered set partition that merges
the block {k} in σ with the block that follows it. If k is not the only element in its block, then
ϕ(σ) is the ordered set partition that removes k from its current block and inserts the block {k}
immediately before it. For example, if k = 6, then ϕ(34, 126, 5) = (34, 6, 12, 5). The map ϕ is a
sign-reversing involution on B, which shows that the sum (∗) vanishes.

So the sum in the definition of Tn reduces to a sum over the ordered set partitions of k in which
the final block is {k}. These correspond exactly to the ordered set partitions of [k − 1]. In fact,
at this point, the only difference betweeen f(k) and f(k − 1) is a sign: f(k) = −f(k − 1). Since
f(1) = 1, that proves the claim.

Plugging in this evaluation, we get the surprising result that

Tn =
∑

H⊆E(Kn)

(−1)κ(H)−1.

As you might expect, this can be generalized:

Theorem 7.30. If G is any undirected graph (possibly with multiple edges or loops), the number
of totally cyclic orientations of G is ∑

H⊆E(G)

(−1)κ(H)−κ(G).

You can prove this, if you want, by following the same path that we used for G = Kn. There
is a related formula for acyclic orientations:

Theorem 7.31. If G is any undirected graph (possibly with multiple edges or loops), the number
of acyclic orientations of G is ∑

H⊆E(G)

(−1)|E(G)|−|V (G)|+κ(H).

Exercise 7.22. Prove Theorem 7.31 using Theorem 6.34 and Exercise 6.8.

7.8. the tutte polynomial
We’ve been building up to one of the most general algebraic structures for matroids: The Tutte
polynomial. Just as with matroids themselves, there are many equivalent ways of formulating it,
each with their own benefits. We’ll define the Tutte polynomial by the so-called corank-nullity
formula and prove the other formulations as theorems.

Definition 7.32. If M = (E,B) is a matroid of rank d and S ⊆ E, the corank of S is d− rank(S);
the nullity of S is |S| − rank(S).

Definition 7.33. There is a useful way of formulating corank and nullity so that they appear as
dual concepts. Prove that the corank of S is the minimum size of a set T so that S ∪ T contains a
basis of M ; and prove that the nullity of S is the minimum size of a set T so that S \T is contained
in a basis.
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For graphical matroids, these quantities have expressions in terms of connected components.
If H ⊆ E(G), then in the matroid MG,

corank(H) = κ(H)− κ(G)
nullity(H) = κ(H) + |E(H)| − |V (G)|

Here, then, is the definition.

Definition 7.34. The Tutte polynomial of a matroid M on the ground set E is the bivariate
polynomial

TM (x, y) =
∑
S⊆E

(x− 1)corank(S)(y − 1)nullity(S)

with the convention that (x− 1)0 = (y − 1)0 = 1. If M =MG, then we write TG for TMG
.

One immediate reason for caring about the Tutte polynomial is that it is a joint generalization
of the chromatic and flow polynomials.

Proposition 7.35. For any graph G, we have
χ̃G(t) = (−1)|V (G)|−κ(G)TG(1− t, 0)
CG(t) = (−1)|E(G)|−|V (G)|+κ(G)TG(0, 1− t).

Exercise 7.23. Prove Proposition 7.35. (Hint: Use Theorem 6.34 for the chromatic polynomial.)

Beyond this, there are many specializations of the variables to integer values that give infor-
mation on the graph. For example:

Proposition 7.36. If G is a graph, then
1. TG(2, 0) is the number of acyclic orientations of G.
2. TG(0, 2) is the number of totally cyclic orientations of G.
3. TG(2, 2) = 2|E(G)|.
4. TG(1, 1) is the number of spanning forests of G.

Proof . Parts 1 and 2 are Theorem 7.30, respectively. For part 3: After substituting x = y = 2
into Definition 7.34, each term becomes 1, so TG(2, 2) is just the number of subgraphs of G, which
is 2|E(G)|. For part 4, recall that we set (x− 1)0 = (y− 1)0 = 1 before we evaluate. So every term
in the corank-nullity formula vanishes when we substitute x = y = 1 except those terms whose
corank and nullity are both 0; each of these terms contributes 1 to the sum. These are exactly the
bases of MG, that is, the spanning forests of G.

More generally, TM (1, 1) is the number of bases of M .
Let’s move on to properties of the Tutte polynomial more broadly. First up, it’s multiplicative:

TMtN = TM TN . (We haven’t defined the disjoint union of two matroids, but it’s exactly what
you expect: The bases of M tN are the unions of a basis from M and a basis from N .) Also, the
Tutte polynomial nicely displays matroid duality:

Proposition 7.37. TM (x, y) = TM∗(y, x).
Proof . The corank of S in M is the nullity of E \ S in M∗.

More interestingly, it satisfies the deletion-contraction principle.

Definition 7.38. Suppose that M = (E,B) is a matroid of rank d. If e is not a loop in M , then
the contraction of M by e is the matroid M/e of rank d− 1 on the ground set E \ {e} whose bases
are B/e := {B \ {e} : B ∈ B and e ∈ B}. If e is not a coloop in M , then the deletion of e in M is
the matroid M \ e of rank d with ground set E \ {e} and basis set B \ e := {B ∈ B : e /∈ B}.
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If e is a loop, then the set B/e is empty, and no matroid has an empty basis set. This is also
why we require that e is not a coloop for deletion.

Theorem 7.39 (Deletion-contraction for Tutte polynomial). The Tutte polynomial TM (x, y) is the
unique bivariate polynomial parameter on matroids for which

1. TM = TM/e + TM\e whenever e is neither a loop nor a coloop and
2. TM = xayb if every element of M is a loop or a coloop, and M has a coloops and b loops.

Note that condition 2 is equivalent to a list of three smaller conditions:
2a TM = yTM\e if e is a loop,
2b TM = xTM/e if e is a coloop, and
2c TEmpty = 1,

where Empty is the empty matroid: The matroid on the ground set ∅ whose collection of bases is
{∅}. These conditions explain why we used x−1 and y−1 in the definition of the Tutte polynomial
instead of x and y; if we used the former, then the factors in conditions 2a and 2b would change
to x+ 1 and y + 1, respectively.

Proof sketch of Theorem 7.39. Condition 2c is immediate. To prove condition 2a, let e ∈ E be a
loop. If e ∈ S, then corankM (S) = corankM\e(S \ {e}) and nullityM (S) = nullityM\e(S \ {e})+ 1,
so we can write

TM (x, y) =
∑
S⊆E
e/∈S

(x− 1)corank(S)(y − 1)nullity(S) +
∑
S⊆E
e∈S

(x− 1)corank(S)(y − 1)nullity(S)

= TM\e(x, y) + (y − 1)TM\e(x, y)

= yTM\e(x, y).

The proof of condition 2b is very similar.
To prove condition 1, take any element e ∈ E that is neither a loop nor a coloop. For any

subset S ⊆ E, we have
corankM (S) = corankM\e(S)
nullityM (S) = nullityM\e(S)

}
if e /∈ S

and
corankM (S) = corankM/e(S \ {e})
nullityM (S) = nullityM/e(S \ {e})

}
if e ∈ S.

You can then use these to break up the sum as we did to prove condition 2a. The polynomial is
determined by the initial conditions and the deletion-contraction recurrence, so it is unique.

As a corollary, we find that the order in which deletion-contraction is applied doesn’t matter.
That’s certainly not obvious. And that’s the nice thing about having multiple characterizations:
Some of them make certain properties of the Tutte polynomial obvious, even while others would
make those same properties seem obscure.

Proposition 7.40. The Tutte polynomial satisfies:
◦ If M and M̃ are isomorphic matroids, then TM = TM̃ . ( Invariance)
◦ TM (x, y) = TM∗(y, x). (Duality)
◦ Every coefficient in TM (x, y) is positive. (Positivity)

Proof . The corank-nullity formula makes invariance clear; deletion-contraction immediately im-
plies positivity. And we already proved duality.

There is one more common characterization of the Tutte polynomial; we turn to that next.
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Definition 7.41. Let M = (E,B) be a matroid and fix a total ordering 4 on E. Given a basis
I ∈ B, an element e ∈ I is called internally active if there is no e′ 4 e such that I \ {e} ∪ {e′} is a
basis; an element f ∈ E \I is called externally active if there is no f ′ 4 f such that I∪{f}\{f ′} is
a basis. The number of interally and externally active elements for I is denoted int(I) and ext(I),
respectively.

The definition might be a bit clearer in the graphical case. In the graphical matroid MG, an
element e ∈ I is internally active if there is a partition of V (G), say AtB, so that e is the minimal
element in the collection of edges connecting A and B. (In jargon: e is the minimal edge of a
cut-set.) And f ∈ E(G) \ I is externally active if it is the minimal edge in the unique cycle in
I ∪ {f}.

Theorem 7.42. Given a matroid M with basis set B and any total order on its ground set,

TM (x, y) =
∑
B∈B

xint(B)yext(B).

Proof . By induction. The base case, when M contains only loops and coloops, is not so hard: M
has a single basis B consisting of all the coloops. Every element of E \B is externally active, and
every element of B is internally active.

Now suppose that M has some positive number of elements that are neither loops nor coloops;
we induct on this number. If we take e to be the maximal element that is neither a loop nor coloop
under the total order, then

intM (B) = intM\e(B)
extM (B) = extM\e(B)

}
if e /∈ B

and
intM (B) = intM/e(B \ {e})
extM (B) = extM/e(B \ {e})

}
if e ∈ B.

As we did for deletion-contraction, use this to decompose the sum; then use the induction hypoth-
esis.

7.9. polymatroids
Matroids are pretty abstract. But some people thought they weren’t abstract enough, whence
polymatroids. What matroids are to graphs, polymatroids are to hypergraphs. And while a
matroid is realized as a collection of vectors, a polymatroid is realized as a collection of subspaces
of a field. At a high level, polymatroids allow dimensions to mix.

Like matroids, polymatroids can be defined in a constellation of equivalent ways. Here’s one:

Definition 7.43. A function f : P([n])→ R is called submodular if f(I)+f(J) ≥ f(I∪J)+f(I∩J)
for every I, J ⊆ [n]. The range of an integer submodular function lies in Z.

A polymatroid is a submodular function ρ that is nonnegative and non-decreasing: if I ⊆ J ,
then ρ(I) ≤ ρ(J). If f is submodular, then f + c, for any c ∈ R, is submodular, so we can always
ensure that f ≥ 0 and f(∅) = 0. We can also transform an arbitrary nonnegative submodular
function to make it monotone.

Exercise 7.24. Let w : [n] → R≥0 be an arbitrary function and define f : P([n]) → R≥0 by
f(I) =

∑
i∈I w(i). Show that f is a monotone submodular function. Also show that if w and w̃

are two weight functions that give rise to the same monotone submodular function, then w = w̃.
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Some polymatroids are realizable as a collection of subspaces of a vector space. A subspace
arrangement in Fn is simply a collection of subspaces in the vector space Fn. The polymatroid
associated to a subspace arrangement V = {V1, . . . , Vn} is

ρ(I) = dim
(

span
⋃
i∈I

Vi

)
.

A polymatroid that arises in this way is called a realizable polymatroid.
Next, we’ll introduce two different characterizations of polymatroids.

Definition 7.44. A generalized permutohedron is a convex polytope P ⊆ Rn for which each edge
is parallel to a vector of the form ei − ej with i 6= j. If every vertex of P is in Zn, then P is called
an integer generalized permutohedron.

Exercise 7.25. Prove that every permutohedron is a generalized permutohedron.

Definition 7.45. A set S ⊆ {x ∈ Zn : x1 + · · · + xn = k} is called M -convex set if, for every
x, y ∈ S and i ∈ [n] with xi > yi, there is a j ∈ [n] with xj < yj such that a−ei+ej and b+ei−ej
are both in S.

M -convexity is some notion of convexity for the discrete space Zn: If a and b are in S, then
you can move them closer to each other inside the set S.

Proposition 7.46. Integer submodular functions, integer generalized permutohedra, and M -convex
sets are cryptomorphic (that is, they encode the same information.

To prove this, we just need to show bijections between the various objects. There are some fairly
simple ones. To get from a submodular function f : P([n]) → Z to a generalized permutohedron,
set

Pf = {x ∈ Rn :
∑
i∈I

xi ≤ f(I) for all I ⊆ [n] and
n∑
i=1

xi = f([n])}.

The inverse of the map f 7→ Pf sends P to the submodular function fP : P([n])→ Z given by

fP (I) = max
x∈P

∑
i∈I

xi.

Exercise 7.26. Verify that these are inverse maps. (Hint: The key point to verify is this: If f is
a submodular function, each of the hyperplanes

∑
i∈I xi ≤ f(I) is tangent to P at some point.)

To get from an integer generalized permutohedron P ⊆ Rn to an M -convex set SP , simply take
SP = P ∩Zn. The inverse map sends S to PS = conv(S). Because all the extremal points of P lie
in the integer lattice, these maps are inverses.

Interpreting matroids (the regular kind) as polytopes makes duality super easy: PM∗ = 1−PM ,
where 1 is the all-ones vector. So duality of matroids amounts to reflection about the point 1

21.
We’ll close this section by describing one new class of generalized permutohedra that derives

from graphs.

Definition 7.47. A zonotope is a [Minkowski sum] of a finite number of line segments. Given a
graph G on the vertex set [n], the graphical zonotope associated to G is

ZG :=
∑
ij∈E
i<j

[ei, ej ],

where Σ denotes the Minkowski sum.
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Up to translation, ZG =
∑
ij [0, ej − ei].

Actually, the face poset of ZG is dual to the face poset of the hyperplane arrangement AG; the
transformation taking ZG to AG sends each line segment in ZG to the central hyperplane with
that line segment as a normal vector. Zonotopes, then, are very similar to what we’ve already
studied, but they hold a bit more information; for example, you can take their volume.

There is a notion of a cographical zonotope that exists in the flow space of G. (The flow space of
a graph is the set of all flows f : E(G)→ R.) It is a (|E(G)|−|V (G)|+1)-dimensional vector space.
In the dual of the flow space, there are the evaluation vectors ve : f 7→ f(e) for each e ∈ E(G); the
cographical zonotope is

Z∗
G :=

∑
e∈E(G)

[0, ve]

in the dual flow space.
There are interpretations of various quantitative information derived from ZG and Z∗

G:

ZG Z∗
G

# vertices acyclic orientations totally cyclic orientations
# lattice points subforests spanning subgraphs

volume spanning trees spanning trees.

Some of them follow directly from the bijection between graphical zonotopes and graphical
hyperplane arrangements; others don’t. You can try to prove them, if you want.
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A. appendix

A.1. finite fields
Throughout this section, F is a finite field with q elements.

Proposition A.1. q is a power of a prime.
Proof . Let p be the characteristic of F ; that is, the least natural number such that

1 + · · ·+ 1︸ ︷︷ ︸
p

= 0.

Such a number exists, since it’s just the order of the element 1 in the additive group of F . We
claim that p must be prime: If p = ab with a, b > 0, then

(1 + · · ·+ 1︸ ︷︷ ︸
a

)((1 + · · ·+ 1︸ ︷︷ ︸
b

) = 0,

so one of the terms on the left must be zero. Since we chose p to be minimal, either a = p or b = p.
So p is prime.

This means that F is a vector space over Z/pZ, where
a · x = x+ · · ·+ x︸ ︷︷ ︸

a

for every a ∈ Z/pZ and x ∈ F . (You can check that all of the axioms of a vector space are
satisfied.) In particular, F has a basis as a vector space, say e1, . . . , en. So every element of F can
be uniquely expressed as a linear combination

a1e1 + · · · anen
with ai ∈ Z/pZ. There are exactly pn such linear combinations, so F has exactly pn elements.

That’s a neat little argument. So there’s no field with exactly 28 elements, for example. It
doesn’t, however, show that there is a field with pn elements. We do that next.

Proposition A.2. There is a finite field with pn elements for every prime p and positive integer
n.

It uses one lemma that relies on a bit of commutative algebra. If you’ve not yet encountered
any ring theory, then it’s probably not worth reading the rest of this section.

Lemma A.3. If k is a field and f is an irreducible polynomial in k[x], then the ideal (f) is a
maximal ideal in k[x].

The proof of this just relies on the fact that in the ring k[x], any two polynomials have a
greatest common divisor. Anyway, let’s skip to the good stuff.

Proof of Proposition A.2. Suppose we can find some irreducible polynomial f ∈ (Z/pZ)[x] with
deg(f) = n. Then F := (Z/pZ)[x]/(f) is a field, since (f) is a maximal ideal. It’s not too hard to
prove that every element of F is representable in the form

a0 + a1x+ · · ·+ an−1x
n−1 + (f),

and that every element in F is uniquely representable in this way. This means that F has exactly
pn elements.

So we just need to find an irreducible polynomial with degree n. It turns out to be hard to
find an explicit one, but proving that one exists just comes down to a bit of counting. If g is
a monic polynomial in (Z/pZ)[x] with degree n, then it can be factored as the product of two
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monic polynomials h1 ·h2 with deg(h1)+deg(h2) = n and deg(h1),deg(h2) ≥ 1. How many monic
polynomials of degree k are there? Easy: pk−1. We may assume that deg(h1) ≤ deg(h2), so the
number of reducible polynomials of degree n is at most

bp/2c∑
k=1

pk−1pn−k−1 ≤ p

2
pn−2 =

1

2
pn−1.

Since there are pn−1 monic polynomials of degree n, some of them must be irreducible.

Proving that two finite fields with the same number of elements are always isomorphic is more
difficult. For a proof of this and other facts about finite fields, see Keith Conrad’s notes.

A.2. systems of linear equations
When does a system of m linear equations

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = c1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = c2
...

...
am,1x1 + am,2x2 + · · ·+ am,nxn = cn

have a common solution x = (x1, . . . , xn) in the vector space Fn? If we make the coefficients into
a matrix A = (ai,j) and the right-hand numbers into a vector c = (c1, . . . , cn, then we’re looking
for a solution to the equation Ax = c. This is simple if c is the zero vector 0; then 0 is itself a
solution. Actually, x is a solution if and only if it is orthogonal to every row of A. Recall that the
rank of a matrix A is the dimension of the subspace of Fn spanned by the rows of A. Therefore
Ax = 0 if and only if x is in the orthogonal subspace to the row space of A. In particular:

Lemma A.4. The set of solutions to the equation Ax = 0, where A is an m×n matrix, is a subspace
of Fn and has dimension n− rank(A).

What if c 6= 0? Then we can form the augmented matrix Ā = [A|c] (obtained by appending c as
an extra column). A solution to Ax = c exactly corresponds to a solution Āy = 0 with yn+1 = −1,
and vice versa. This almost reduces it to the previous problem. This is the key.

Proposition A.5. There is a solution to the equation Ax = c if and only if rank(A) = rank(A|c).
Proof . We use V to denote the solution space to Ax = 0 and W to denote the solution space to
Āy = 0. By the lemma, the dimension of W is n + 1 − rank(Ā). If A has a collection of k row
vectors that are linearly independent, then the same row vectors in Ā are linearly independent, as
well; so rank(Ā) ≥ rank(A).

Since (x1, . . . , xn, 0) ∈ W whenever (x1, . . . , xn) ∈ V , we have W ⊇ V ⊕ {0}. If rank(Ā) >
rank(A), then dim(W ) = n+1− rank(Ā) ≤ n− rank(A) = dim(V ). But W contains V ⊕{0}; this
means that W = V ⊕ {0}. In particular, the last coordinate of every vector in W is 0, not −1; so
there is no solution to Ax = c.

On the other hand, if rank(A) = rank(Ā), then dimW = dimV + 1, so W contains a vector
y with yn+1 6= 0. Then z = − 1

yn+1
y is a vector in W whose last coordinate is −1; the vector

x = (z1, . . . , zn) is a solution to the equation Ax = c.

We need a few more fact about matrices. Recall that a minor of a matrix A is the determinant
of a square submatrix of A.

Lemma A.6. kerA = (imAT )⊥.
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Proof . A vector x ∈ Rn is in the kernel of A if and only if 〈Ax, y〉 = 0 for every y ∈ Rm. From
〈Ax, y〉 = 〈x,AT y〉, the claim follows.

Lemma A.7. The rank of A is also the rank of AT .
Proof . Take the previous lemma and calculate dimensions using the rank-nullity theorem:

n− rankc(A) = dim(kerA) = n− dim(imAT ) = n− rankc(AT ),

where rankc(A) denotes the column rank of A (the dimension of the image of A; alternatively, the
dimension of the span of the column vectors of A). Therefore rankc(A) = rankc(AT ). Substituting
rankc(A) = rank(AT ) finishes the proof.

Now meet one final participant in our parade of lemmas.

Lemma A.8. The rank of A is at least r if and only if every r × r minor of A is nonzero.
Proof . If rank(A) < r, then any choice of r row vectors of A are linearly dependent. So the
determinant of the projection of these r vectors into any subspace is 0.

If rank(A) ≥ r, then there are r linearly independent row vectors; let B be the submatrix of
A that consists of these rows. By Lemma A.7, the matrix B has r linearly independent column
vectors. The corresponding r × r matrix is a submatrix of A with nonzero determinant.
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absolute length, 45
absolute order, 46
absorption laws, 37
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external, 85
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adjacency length, 46
affinely dependent, 71
alternating tree, 49
associahedron, 31

graphical, 34
atom, 68
augmentation property, 70
augmented matrix, 89

ballot number, 17
Bell number, 3
Betti number, 66
binary search tree, 21
binary tree, 9

complete, 9
increasing, 20
labelled, 20
left-increasing, 21

Boolean lattice, 37
braid arrangement, 64

Catalan arrangement, 63
central, 67
chain, 38
chamber, 64

fundamental, 64
characteristic polynomial

hyperplanes, 60
matroid, 79

chromatic number, 58
chromatic polynomial, 58

reduced, 77
circuit, 69

broken, 69
closure, 74
cohomology ring, 66
coloop, 75
combinatorial statistic, 17
common refinement, 41
composition, 2

convex combination, 23
convex hull, 23
convex set, 23
corank, 82
cover (poset), 37
cycle, permutation, 45
cyclic type, 50

deletion-contraction, 58, 83
depth-first search, 10
descent, 27
discrete derivative, 54
downward finite poset, 53
dual of a polytope, 28
dual of a poset, 39
Dyck path

labelled, 22

edge coloring, 77
equidistributed, 17
Eulerian number, 27
exchange axiom, 70

f -vector, 24
facet, 24
falling factorial, 1
falling power, 1
finite field method, 61
flag

complete, 39
flag polytope, 28
flat, 74

lattice of, 74
flow, 78
flow polynomial, 79

matroid, 79
flow space, 87
forest

planted, 12

G-connected, 34
γ-vector, 28
generalized permutohedron, 86
generating function

elementary, 5
exponential, 5

generic function, 25
geometric realization, 32
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graded poset, 41
graph coloring, 58
graphical arrangement, 57, 79

h-vector, 25
half-space, 23
Hasse diagram, 37
Hurwitz problems, 50
hyperplane, 23
hyperplane arrangement, 56, 57

central, 57
rational, 60

hyperplane rank, 61
hyperplane support, 24
hypersimplices, 30

incidence algebra, 51
incidence matrix, 65
independent, 69
intersection lattice, 57
interval in a poset, 46, 51
interval order, 64
inversion of a permutation, 40
isomorphism

of posets, 38

Kreweras complement, 45

lattice, 37
atomic, 73
geometric, 73
graded, 73

lattice polytope, 30
linear extension, 51
locally finite poset, 51
long chains, 46
loop, 75

M -convex set, 86
matrix

basis, 70
matroid, 70

circuit, 70
cographical, 79
contraction, 83
deletion, 83
dual, 79
graphical, 72
independent set, 70
realizable, 71
simple, 75

uniform, 74
matroid polytope, 76
minimal generating set of hyperplanes, 24
Minkowski sum, 33
minor

of a matrix, 89
Mobius function, 53

Narayana numbers, 18
nested set complex, 36
nestohedra, 35
No Broken Circuits theorem, 69
non-crossing set partition, 42
non-nesting tree, 49
noncrossing set partition, 43
noncrossing subdivision, 31
noncrossing tree, 49
nowhere-zero, 78
nullity, 82

order-preserving, 38
ordered Bell number, 38
orientation

strongly connected, 80
totally cyclic, 80

parking function, 21
partially ordered set, 37
partition, 5
partition lattice, 41
permutohedron, 26
planar graph, 76
plane forest, 16
plane graph, 76
plane tree

child-increasing, 22
plane trees, 10
Poincaré polynomial, 66
polymatroid, 85

realizable, 86
polytope, 23

dimension, 24
edges, 24
faces, 24
simple, 25
vertices, 24

poset, 37
minimal element, 38
minimum element, 38

product poset, 55
proper edge coloring, 77
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q-analogues, 39

radical, 56
rank

hyperplane, 67
matrix, 89
matroid, 72

rank function, 41
reflection length, 45
regions

of a hyperplane arrangement, 61
relatively bounded region, 61
rising factorial, 1
rising power, 1

saturated chain, 38
semimodular, 73
semiorder, 64
Shi arrangement, 64
sign of a permutation, 27
simplicial complex, 29

clique, 29
face, 29
pure, 36

Stirling numbers

first kind, 58
second kind, 2

strongly connected components, 81
submodular, 73
submodular function, 85
subspace arrangement, 86
subtraction-free, 68
supporting face, 24

tree
labelled

rooted, 12
triangulation, 31
tube, 36
tubing, 36
Tutte polynomial, 83

unit interval order, 64

Weak Bruhat order, 47
width, 73

zeta function, 53
zonotope, 86

cographical, 87
graphical, 86

93


	The twelvefold way
	Introduction
	The easy entries
	Stars and bars and donuts and dividers
	Stirling numbers
	An aside: Inclusion-Exclusion
	Partitions
	The completed table

	Generating functions
	Introduction
	Lagrange inversion
	Applications of Lagrange inversion
	Proof of Lagrange inversion
	An extension of Lagrange inversion
	Statistics

	A handful of sequences
	Labelled trees
	Parking functions
	The Cayley numbers 

	Polytopes
	The beginning
	Faces, f-vectors, and h-vectors
	The permutohedron
	Eulerian numbers and the gamma vector
	Volume of polytopes
	The associahedron
	Geometric realization of the associahedron
	Graphical associahedra

	Posets
	Definitions
	q-analogues and the lattice of subspaces
	The partition lattice
	Symmetric group lattices
	Decompositions of the long cycle
	Möbius inversion
	The Möbius function

	Hyperplane arrangements
	Graphical arrangements
	Möbius functions, chromatic polynomials, and hyperplane arrangements, oh my!
	Characteristic polynomial of hyperplane arrangements
	The Catalan arrangement
	Interval orders
	Complex hyperplane arrangements
	The Orlik-Solomon algebra
	New formulas for the characteristic polynomial

	Matroids
	What are they?
	Geometric lattices
	Matroid polytopes
	Graph duality
	Matroid duality
	Graphical and cographical hyperplane arrangements
	Diversion: counting totally cyclic orientations
	The Tutte polynomial
	Polymatroids

	Appendix
	Finite fields
	Systems of linear equations


