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1. introduction

1 Introduction

The question that motivates the entire subject is: How do we understand large networks?
Examples of such networks include the social graph, where two people are connected if they
know each other; the internet graph, where two devices are adjacent if they are connected
through the internet; models of ecological systems; and molecular networks. Each of these
networks varies throughout time: Animals are born or die and social connections are severed
or formed. As a result, we model these networks using sequences of graphs, representing the
passage of time. We can ask questions such as: Does the behavior of this sequence converge in
some way? If so, what does that mean? Thus begins the theory of graph limits.

There are two special types of graph sequences. To explain, let (Gn) be a sequence of graphs
where |V (Gn)| tends to infinity. (We make this assumption so that asymptotic analysis makes
sense.) The sequence (Gn) is dense if there is a constant c > 0 so that Gn has asymptotically
at least c|V (Gn)|2 edges. (In other words, Gn contains a positive proportion of its possible
connections.) The sequence is sparse if there is a constant D ≥ 0 so that deg(v) ≤ D for all
v ∈ V (Gn) and n ∈ N.

A dense graph sequence has Ω(|V (Gn)|2) edges, while a sparse sequence has O(|V (Gn)|)
edges. Two parallel but separate theories have been developed for graph limits of these classes,
and little is known about graphs in between, for example graph sequences with Θ(|V (Gn)|3/2)
edges. The limit theory of sparse graphs is a bit more technical, so these notes discuss limits
of dense graph sequences. As a side note, these ideas have been used to create limit theories
for a variety of other combinatorial objects. Naturally, there is now a theory of hypergraph
convergence, but there are also limit theories for partially-ordered sets and permutations.

As for these notes, Sections 2–4 introduce the idea of convergence for graph sequences and
the limits of convergent sequences. Sections 5–8 develop the theory of graph limits, and Sections
9 and 10 provide applications of graph limits to extremal graph theory. Throughout, there
are a variety of connections to material throughout mathematics, including measure theory,
probability, and Szemerédi’s Regularity Lemma from graph theory.

The first paper on graph limits [1] was published in 2008 (although of course steps toward
this theory had been made before then). Consequently, the only textbook on the subject is the
one by Lovász [2], which covers far more material than these notes. In particular, it addresses
limits of sparse graph sequences. The graph limits portion of Zhao’s notes [3] is also a nice
resource.
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2. graph homomorphisms

2 Graph homomorphisms

All of the graphs will be finite, undirected, and simple (no multiedges and no loops). We
denote by v(G) and e(G) the number of vertices and edges of G, respectively. We define
[n] = {1, 2, . . . , n}.

One of the ways to understand large networks is to ascertain their local structure. Prac-
tically speaking, the way we do this is by sampling. Large networks are too, well, large to
computationally deal with the entire structure. Instead, we can choose some relatively small
number of vertices and query the database about the connections between these specific ver-
tices. The hope is that by repeating this multiple times and choosing these vertices in a clever
way, we’ll be able to learn something about the network. In fact, we won’t be clever at all—
we’ll choose the sampled vertices randomly. It turns out that this procedure actually yields
useful information for dense graphs. (For sparse graphs, virtually every random sample is the
empty graph, so there’s no hope of obtaining information by sampling this way.) So how do
we formulate this as math? Instead of focusing on sampling per se1, we’ll use a related graph
theory notion: homomorphism.

Definition 2.1. A homomorphism between two graphs F and G is a map φ : V (F ) → V (G)
such that φ(i)φ(j) ∈ E(G) for all ij ∈ E(F ).

A homomorphism need not preserve non-adjacency. We denote by hom(F,G) the number
of homomorphisms from F to G and by inj(F,G) the number of injective homomorphisms from
F to G. In terms of sampling and local structure, inj(F,G) is the number of (labelled) copies
of F that reside in G. An induced homomorphism is an injective homomorphism whose image
is an induced subgraph; that is, an induced homomorphism preserves non-adjacency as well.
The number of induced homomorphisms from F to G is denoted ind(F,G). Finally, we denote
the number of isomorphisms (bijective induced homomorphisms) from F to G by iso(F,G) and
the number of automorphisms of F (isomorphisms from F to F ) by aut(F ).

Example 2.2. We denote the path graph and cycle graph with n vertices by Pn and Cn,
respectively.
• hom(P3, P2) = 2 and inj(P3, P2) = ind(P3, P2) = 0.
• hom(P2, P3) = inj(P2, P3) = ind(P2, P3) = 4.
• aut(Cn) = 2n.3

2.1 Basic relations and properties of homomorphism numbers

We start with two straightforward relations between homomorphism numbers.

Definition 2.3. Let F1 and F2 be two graphs. Their disjoint union is the graph F1∪F2 = F1F2

on vertex set V (F1)t V (F2), where ij ∈ E(F1F2) if and only if ij ∈ E(F1) or ij ∈ E(F2).4 We
denote the k-fold disjoint union of F by kF .

Proposition 2.4. hom(F1F2, G) = hom(F1, G)hom(F2, G) for all graphs F1, F2 and G.

Proof. A homomorphism from F1F2 to G is an independent pair of homomorphisms F1 → G
and F2 → G.

1Amn’t2 I fancy.
2Apparently a contraction used in Ireland and Scotland.
3Never one to shy away from stirring up controversy with correct notation, the author notes that this set of

automorphisms is the dihedral group Dn.
4You can think of this as placing the graphs beside each other and then considering the two of them together

to be a single graph.
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2. graph homomorphisms

Proposition 2.5. If F1 ⊆ F2, then hom(F2, G) ≤ hom(F1, G)v(G)v(F2)−v(F1).

Proof. Any homomorphism F2 → G is also a homomorphism from F1 ∪ (V (F2) \ V (F1)), and
each of these is distinct. The graph V (F2) \ V (F1) is just v(F2) − v(F1) isolated vertices and
hom(K1, G) = v(G), so we apply Proposition 2.4 to finish the proof.

We now state and prove some relations between the different types of homomorphism num-
bers. These relations are used only infrequently, so the rest of this section can be skimmed or
postponed.

To state the relations, we introduce some notions. Fix a graph F . A set S ⊆ V (F ) is
independent if no two vertices in S are adjacent. Let P be a partition of V (F ) into independent
sets. The graph F/P has vertex set P and the edge XY if and only if there are x ∈ X and y ∈ Y
with xy ∈ E(F ). That is, F/P is formed by gluing together the vertices in each independent
set of P and removing multiedges.

Proposition 2.6. For any simple graphs F and G, the following relations hold:

inj(F,G) =
∑
F ′⊇F

v(F ′)=v(F )

ind(F,G) (2.1)

hom(F,G) =
∑
P

inj(F/P,G) (2.2)

ind(F,G) =
∑
F ′⊇F

v(F ′)=v(F )

(−1)e(F
′)−e(F )inj(F,G) (2.3)

inj(F,G) =
∑
P

µP hom(F/P,G), (2.4)

where the µP are integer coefficients depending only on F .

To prove this, we’ll use some lemmas.

Lemma 2.7. For any two finite sets A ⊆ C, we have

∑
A⊆B⊆C

(−1)|C|−|B| =

{
1 if A = C

0 otherwise.

Proof. There are
(|C|−|A|

k

)
sets B of cardinality |A|+k so that A ⊆ B ⊆ C. The sum is therefore

|C|−|A|∑
k=0

(−1)k
(
|C| − |A|

k

)
,

which is 0 by the binomial theorem whenever A 6= C. If A = C the lemma is obvious.

Lemma 2.8 (Möbius inversion). Let X be a finite set and f, g : P(X) → C with f(A) =∑
B⊆A

g(B) for all A ⊆ X. Then g(A) =
∑
B⊆A

(−1)|A|−|B|f(B).

Proof. We can prove this by directly calculating from the definition:∑
B⊆A

(−1)|A|−|B|f(B) =
∑
B⊆A

(−1)|A|−|B|
∑
C⊆B

g(C).

5



2. graph homomorphisms

The two sums index over all sets B and C with C ⊆ B ⊆ A, so we can rewrite the sum as∑
C⊆A

g(C)
∑

C⊆B⊆A

(−1)|A|−|B|.

Lemma 2.7 shows that every term except C = A vanishes, so the expression collapses to the
single term g(A).

We can also present the proof using matrices: Consider f and g as column vectors indexed
by subsets of X. If we define the 2|X| × 2|X| matrix M by

M(S, T ) =

{
1 if S ⊇ T
0 otherwise,

then f = Mg. If we order the subsets of X according to increasing size and then use that
ordering for the rows and columns of M , we find that M is an upper-triangular matrix where
every diagonal entry is 1. So det(M) = 1 and M has an inverse. Indeed, by defining

M ′(S, T ) =

{
(−1)|S|−|T | if S ⊇ T
0 otherwise,

Lemma 2.7 gives that M ′M = I. Then g = M ′f , which shows that

g(S) =
∑
T⊆X

M ′(S, T )f(T ) =
∑
T⊆S

(−1)|S|−|T |f(T ).

Definition 2.9. Let A be an n×n matrix and A′(i, j) be the matrix obtained by deleting the
ith row and jth column of A. The cofactor matrix of a square matrix A is the n × n matrix
CA = (ci,j) whose entries are the cofactors of A, that is, ci,j = (−1)i+j det(A′(i, j)). The
adjugate matrix of A is the transpose of the cofactor matrix: adj(A) = CTA .

Proposition 2.10. If A is an invertible matrix, then A−1 = 1
detA adj(A).

Proof. Let A be an n × n invertible matrix and set B = adj(A). We calculate (AB)i,j . Note
that Bi,j = (CA)j,i. If i = j, then we have

(AB)i,i =

n∑
k=1

Ai,k(CA)i,k = det(A)

by the definition of cofactor expansion. On the other hand, if i 6= j, then

(AB)i,j =

n∑
k=1

Ai,k(CA)j,k

is the cofactor expansion of a matrix whose ith and jth rows are equal, so (AB)i,j = 0.
Therefore AB = det(A)In, and the conclusion follows.

Corollary 2.11. If A is a invertible matrix of integers and |detA| = 1, then A−1 also has
integer entries.

With all this preparation, we can prove the proposition.
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2. graph homomorphisms

Proof of Proposition 2.6. For (2.1), note that each injective homomorphism is an induced ho-
momorphism for a graph with more edges, and vice versa. To get (2.2), we see that any
homomorphism is an injective homomorphism from the quotient graph F/Q, where Q is the
collection of preimages of vertices of G (and Q is an independent set because the map is a
homomorphism, so adjacent vertices in F cannot be mapped to the same vertex in G). Fur-
ther, any injective homomorphism from a quotient graph gives rise to a homomorphism of F .
Equation (2.3) follows from Lemma 2.8 applied to (2.1).

Finally, we prove (2.4). Let f be the vector whose entries are indexed by all quotient
graphs of F , with entries f(F/P ) = hom(F/P,G). Similarly, let g be the whose entries are
g(F/P ) = inj(F/P,G). We define a square matrix M indexed by these quotient graphs, where
M(F/P, F/Q) is 1 if F/Q is a quotient of F/P and 0 otherwise. Then f = Mg by (2.2).

If we order the quotient graphs by number of vertices, then M is a triangular matrix with
every diagonal entry equal to 1. So |detM | = 1 and by Corollary 2.11, M−1 is an integer-valued
matrix. Then g = M−1f and

inj(F,G) = g(F ) =
∑
P

M−1(F, F/P )hom(F/P,G).

Setting µP = M−1(F, F/P ) finishes the proof.

Exercise 2.12. Work out similar relations for the homomorphism numbers as functions of the
second argument.

Here is a nice application of these relations: The homomorphism numbers of a graph com-
pletely determine the graph itself.

Theorem 2.13. Two graphs G1 and G2 are isomorphic if and only if hom(F,G1) = hom(F,G2)
for every finite simple graph F .

Proof. The forward direction is immediate. For the reverse direction, identity (2.4) shows that
inj(F,G1) = inj(F,G2) for all F . Similarly, identity (2.3) shows that the number of induced
homomorphisms must be the same. Taking F = G1 shows that ind(G1, G2) = ind(G2, G2) > 0,
so there is an induced homomorphism from G1 to G2. It follows that v(G1) ≤ v(G2). But
taking F = G2 shows the opposite, so v(G1) = v(G2), and any induced homomorphism is an
isomorphism.

As a remark, the reconstruction conjecture posits that we need slightly less. The conjecture
is notoriously difficult and is still unsolved.

Conjecture 2.14 (Reconstruction conjecture, 1963). Let G1 and G2 be two graphs with at least
3 vertices. If hom(F,G1) = hom(F,G2) for all graphs F with v(F ) < v(G1), then G1

∼= G2.

2.2 Homomorphism numbers at work

Many quantities can be expressed in terms of homomorphism numbers: Denoting by Pk the
path with k vertices, the number of walks of k vertices in G is hom(Pk, G). The number of
closed walks of length k is hom(Ck, G). Let Sk denote the star on k vertices. A homomorphism
from Sk to G consists of mapping the central vertex of Sk and then mapping the remaining
vertices to its neighbors, so hom(Sk, G) =

∑
v∈G deg(v)k−1. The number of proper q-colorings

of G is hom(G,Kq), and the chromatic number is the least integer n so that hom(G,Kn) > 0.
The clique and independence numbers of G are the largest n so that hom(Kn, G) > 0 and
hom(Kn, G) > 0, respectively. (G is the complement of G.)
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2. graph homomorphisms

2.3 Homomorphism densities

For large graphs, the homomorphism numbers are impractical—they’re just really big numbers.
So we normalize them as follows.

Definition 2.15. The homomorphism density of F in G is

t(F,G) =
hom(F,G)

v(G)v(F )
.

In other words, t(F,G) is the proportion of random mappings V (F ) → V (G) that are homo-
morphisms, or the probability that a uniform random such mapping is a homomorphism. We
set nk = n(n − 1) · · · (n − k + 1), the number of injective maps from [k] to [n]. The injective
homomorphism density of F in G is

tinj(F,G) =
inj(F,G)

v(G)v(F )
=

inj(F,G)

v(G)(v(G)− 1) · · · (v(G)− v(F ) + 1)
,

the proportion of injective mappings V (F )→ V (G) that are homomorphisms.

If G is large compared to F , then a random vertex mapping is almost certainly injective.
This observation can be formalized to show that t(F,G) and tinj(F,G) are close when G is
large.

Proposition 2.16. Let F and G be graphs on k and n vertices, respectively. Then

|t(F,G)− tinj(F,G)| ≤ 1

n

(
k

2

)
.

Proof. Provisionally, let ninj(F,G) denote the number of non-injective homomorphisms from F
to G, so that hom(F,G) = inj(F,G) + ninj(F,G). Then

t(F,G)− tinj(F,G) =
ninj(F,G)

nk
− inj(F,G)

(
1

nk
− 1

nk

)
.

We bound each term individually. Any non-injective homomorphism is also a non-injective
mapping of vertices. To form such mappings, we can choose two vertices of F to be identified
and then map the k − 1 vertices arbitrarily, so ninj(F,G) ≤

(
k
2

)
nk−1. It follows that

0 ≤ ninj(F,G)

nk
≤ 1

n

(
k

2

)
.

For the other term, we have inj(F,G) ≤ nk, so

inj(F,G)

(
1

nk
− 1

nk

)
≤ 1− nk

nk
=
nk − nk

nk
.

Since nk − nk is the number of non-injective mappings from a k-set into an n-set, we have
nk − nk ≤ nk−1

(
k
2

)
, which shows that

0 ≤ inj(F,G)

(
1

nk
− 1

nk

)
≤ 1

n

(
k

2

)
.

Combining, we have

− 1

n

(
k

2

)
≤ t(F,G)− tinj(F,G) ≤ 1

n

(
k

2

)
.
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2. graph homomorphisms

This is useful when considering sequences of graphs (Gn) where v(Gn)→∞. Some calcula-
tions are easier using injective homomorphisms, and some are easier using all homomorphisms;
Proposition 2.16 allows us to switch between the two by picking up an error term of O(1/n).
We’ll see some of this in Section 3.2.
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3. convergence of graph sequences

3 Convergence of graph sequences

3.1 Definition and first examples

Let’s get to the heart of the matter. What does it mean for a graph sequence to be convergent?5

Definition 3.1. A sequence (Gn) of finite simple graphs with v(G)→∞ converges if t(F,Gn)
converges for each finite simple graph F . In this case, we write t(F,Gn)→ tF for each F .

So a graph sequence is convergent (for us) if its local behavior “settles down”. Since we’re
interested in properties that we can estimate via sampling, this seems like a sensible definition
of convergence. What does such a sequence converge to? Let’s ignore that in favor of examples.
Yay, examples!

Example 3.2. Gn = Kn. Any injective mapping V (F ) → V (Kn) is a homomorphism, so
tinj(F,Kn) = 1, and t(F,Kn)→ 1 for all F by Proposition 2.16. Therefore (Kn) is convergent
and tF = 1 for all F .

Example 3.3. Gn = Kn,n. If F is not bipartite, then t(F,Kn,n) = 0 for all n. If F has
bipartition AtB, then we choose which bipartition of Kn,n to map A into, and then there are
n choices for each vertex of F , so hom(F,Kn,n) = 2nv(F ). It follows that t(F,Kn,n) = 21−v(F )

for any bipartite F . Since the homomorphism densities are constant, (Kn,n) is convergent.

Let Hn denote the bipartite graph with vertex set {u1, . . . , un} t {v1, . . . , vn} and the edge
uivj if and only if i ≤ j, called the half-graph on 2n vertices. For example, H4 is shown below.

u1 u2 u3 u4

v1 v2 v3 v4

It’s possible to prove that (Hn) converges using what we’ve proven so far, though it’s a chal-
lenging exercise. It will also follow from more powerful results once we actually dive into graph
limits.

Example 3.4. Sparse graphs. Suppose that e(Gn)/v(G)2 → 0, that is, that (Gn) is sparse.
If F has at least one edge, we may overcount hom(F,Gn) by mapping that edge first and the
remaining vertices arbitrarily; thus hom(F,Gn) ≤ 2e(Gn)v(G)v(F )−2. Then

t(F,Gn) =
hom(F,Gn)

v(G)v(F )
≤ 2

e(Gn)

v(G)2
−→ 0.

Since every map from a graph kP1 with no edges is a homomorphism, the homomorphism
density t(kP1, Gn) is always 1. Therefore any non-dense graph sequence always converges, but
always to the same homomorphism densities. So the theory we’re going to develop is only useful
for dense graph sequences.

5Actually there are multiple definitions of graph convergence that are not equivalent. Here’s one used in
spectral graph theory for sparse graphs: Let GD denote the set of simple rooted graphs (finite and infinite) with
maximal degree at most D. (Each graph has one specified “‘root” vertex.) We let Bk(G) denote the ball of
radius k in G centered at the root. A sequence (Gn) ⊆ GD is convergent if Bk(Gn) is eventually constant for
each k. So if n is large enough, the part of Gn near the root is fixed.

10



3. convergence of graph sequences

3.2 An extended example: Erdős-Rényi random graphs

3.2.1 Expected value

Definition 3.5. The Erdős-Rényi random graph G(n, p) is a random variable on the set of
labelled graphs with vertex set {1, 2, . . . , n}. The graph G(n, p) contains each edge (not loops)
independently with probability p.

The goal of this section is to show that for a fixed p ∈ [0, 1], the sequence (G(n, p)) converges
with probability 1.6 Since p is fixed, we will denote the random variable G(n, p) by Gn.

Fix a graph F . We first find the expected value of t(F,Gn). With an eye on Propostion
2.16, we’ll evaluate tinj(F,Gn).7 We have

EGn [tinj(F,Gn)] = EGn [Eφ[δ(φ is a hom.)]] ,

where the second expected value is over all injective maps φ : V (F ) → V (Gn). The vertex set
of Gn is the same no matter its value, so Eφ is a finite sum whose range is independent of Gn.
We may therefore switch the order to get

EGn [tinj(F,Gn)] = Eφ [EGn [δ(φ is a hom.)]] = Eφpe(F ) = pe(F ).

So the expected value of tinj(F,Gn) converges to pe(F ), so the expected value of t(F,Gn) does, as
well. To show that t(F,Gn) itself converges to the expected value with probability 1, however,
we need to get a handle on how far it can stray from its expected value. So let’s do that.

3.2.2 A probability interregnum

Here’s a fundamental result from probability theory.

Theorem 3.6 (Markov’s inequality). Let X be a random variable on the positive reals. For
every a > 0, we have P(X ≥ a) ≤ 1

aE[X].

Proof. Let f be the probability density function of X, so that E[X] =
∑∞
x=0 xf(x). Then

E[X] =

a∑
x=0

xf(x) +

∞∑
x=a

xf(x) ≥ a
∞∑
x=a

f(x) = aP(X ≥ a).

The argument if X is continuous is the same—just replace the sums with integrals.8

And now you know all of probability theory.9

Definition 3.7. Let X be a random variable with finite expected value µ. The variance of X
is Var(X) = E[(X − µ)2], and the standard deviation of X is

√
Var(X).

A straightforward calculation using linearity of expectation shows that Var(X) = E[X2] −
E[X]2. Intuitively, variance measures how much the variable X varies from its mean. The
following inequality makes this precise.

6We won’t. But we’ll get close!
7Using the other eye, of course.
8A measure-theoretic view of random variables unites these two arguments. This perspective is presented in

Section 7.3.
9That’s not true. But sometimes it seems like the rest of probability is one long corollary to Markov’s

inequality.
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3. convergence of graph sequences

Theorem 3.8 (Chebyshev’s inequality). Let X be a random variable with finite mean µ and
standard deviation σ, and let ε > 0. Then P(|X − µ| ≥ ε) ≤ σ2/ε2.

Proof. We apply Markov’s inequality10 to the new random variable (X − µ)2:

P
(
(X − µ)2 ≥ ε2

)
≤ 1

ε2
E[(X − µ)2] =

σ2

ε2

and note that (X − µ)2 ≥ ε2 if and only if |X − µ| ≥ ε.

We need one more ingredient from probability.

Theorem 3.9 (Borel–Cantelli Lemma). Let (Ai) be a sequence of events such that
∑∞
i=1 P(Ai) <

∞. Then the probability that infinitely many Ai occur is 0.

Proof. Let p be the probability that infinitely many Ai occur. Any event which causes infinitely
many Ai to occur is in

⋃∞
i=N Ai for all N ∈ N. Since

∑
P(Ai) converges,

p ≤ P

( ∞⋃
i=N

Ai

)
≤
∞∑
i=N

P(Ai)
N→∞−−−−→ 0,

so p = 0.

3.2.3 Variance and convergence

Now we return to the sequence Gn = G(n, p). The expected value of t(F,Gn) over Gn is pe(F ).
The variance is

Var(t(F,Gn)) = E[t(F,G)2]− E[t(F,G)]2.

Using Propositions 2.4 and 2.16, we have

Var(t(F,Gn)) = E[t(FF,G)]− E[t(F,G)]2

≤ E[tinj(FF,G)]− E[tinj(F,G)]2 +O

(
1

n

)
= O

(
1

n

)
,

since E[tinj(FF,G)] = E[tinj(F,G)]2 = p2e(F ).
Chebyshev’s inequality therefore shows that P

(
|t(F,Gn) − pe(F )| > ε

)
= O

(
1/nε2

)
. Here

we encounter the problem foreshadowed in footnote 6: The sum
∑

1
n is divergent, so we cannot

apply the Borell-Cantelli Lemma. But that’s not too much of a problem. We modify Gn by
choosing Gn = G(bnrc, p) for any r > 1. The analysis conducted before is exactly the same,
and

∑
bn−rc is convergent, so the Borell-Cantelli Lemma implies that |t(F,Gn) − pe(F )| > ε

for only finitely many n with probability 1. Therefore (Gn) converges with probability 1. To
show that (G(n, p)) converges with probability 1 requires better estimates than Chebyshev’s
inequality provides. We do this in Section 5.2.4.

10See?
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4. limit objects

4 Limit objects

So what should the limit object be?

4.1 Product space

From an analytical perspective, we can come up with one potential limit object pretty quickly.
Let (Gn) be a convergent graph sequence. The collection F of all simple graphs is countable
(since there are finitely many graphs on any given number of vertices), so let F = {F1, F2, . . . }.
For each Fi, we have the limit limn→∞ t(Fi, Gn) exists; call it ti. One way to construct a
limit object is to just record these limit densities as an element of the set [0, 1]F = [0, 1]N,
so that limn→∞(Gn) = (t1, t2, . . . ). In fact, by associating each graph Gn with the vector
(t(F1, Gn), t(F2, Gn), . . . ) ∈ [0, 1]N, graph convergence simplifies to coordinate convergence in
[0, 1]N.

This is one possible answer. Here’s why it’s a bad one: Not every point of [0, 1]N is a limit
point of a graph sequence. This is simply because the coordinates of graph sequences are not
independent.

Lemma 4.1. If F1 ⊆ F2, then t(F1, G) ≥ t(F2, G).

Proof. Divide both sides of Proposition 2.5 by v(G)v(F2).

Thus, any point of [0, 1]F whose F1-coordinate is less than its F2-coordinate is not a limit
point. There’s an even easier way to see that [0, 1]N is too big of a space: Any point of [0, 1]F

whose kK1 coordinate is not 1 is not a limit point.
But one problem with this is that the limit object does not resemble the terms of the

sequence. In particular, it is hard to see any combinatorial structure in the elements of [0, 1]N.
Indeed, we will devise a different limit object later. However, this structure will yield some
useful insights, so we’ll continue investigating it for now. There are other relations between
coordinates, as well:

Lemma 4.2. t(F1 ∪ F2, G) = t(F1, G)t(F2, G).

Proof. Divide both sides of 2.4 by v(G)v(F1)+v(F2).

So most points of [0, 1]N are not limits points. However, this space does have one redeeming
aspect. We can equip [0, 1]N with the distance function d(x, y) =

∑∞
i=1 2−i|xi−yi|, which turns

it into a compact (and therefore complete) metric space. (You can either trust me or look in the
appendix for a proof.) Compactness is man’s best friend and a stalwart companion in developing
limit theories. Whenever we want to prove something about generic graph sequences, we can
pass to a convergent subsequence, which is much easier to deal with. We’ll see this technique
once we develop a better limit object.

4.2 Ultraproducts

We can also take a set-theoretic tack. The method presented in this section is actually quite
general, and it can be used to form a limit object for sequences from any space. However, it has
some drawbacks. It’s not constructive (it uses the Axiom of Choice), and it is very abstract.
This subsection can be skimmed or even skipped; the next one discusses the limit objects we’ll
actually end up using.11 But ultrafilters are fun, and the ultraproduct method is very general.
Let’s dive in.

11Yep, spoiler: This one won’t work either. Well, not without significantly more effort.
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4. limit objects

Definition 4.3. A filter F on a set X is a nonempty collection of subsets of X such that
1. if A ∈ F and B ⊇ A, then B ∈ F ,
2. if A,B ∈ F , then A ∩B ∈ F , and
3. ∅ /∈ F .

A filter U is called an ultrafilter if, moreover, for every set A ⊆ X, either A ∈ U or X \A ∈ U .

Any filter cannot contain both A and X \A, and any filter on X contains X as an element.
Therefore every ultrafilter is contains exactly one of A and X \ A for each A ⊆ X. Because
of this, you can think of an ultrafilter as a perfect voting system when a set X of voters is
choosing between two alternatives. Some set A votes for one, and the set X \ A votes for the
other; the one that’s in the ultrafilter wins.

There’s one easy way to construct an ultrafilter. Choose any element a ∈ X. The collection
of subsets of X that contain a is an ultrafilter, called the principal ultrafilter generated by a. A
filter is principal if and only if it contains a finite set.

So . . . are there any nonprincipal ultrafilters? Yes. In fact, every infinite set X admits a
nonprincipal ultrafilter, but you’ll never see it—it hides behind Zorn’s Lemma. Fix an infinite
set X. We start with the cofinite filter F = {A ⊆ X : X \ A is finite}, which is a filter. Using
Zorn’s Lemma, we can obtain a maximal filter ω that contains F and then prove that such a
filter is an ultrafilter. Since it contains no finite sets, ω is not principal. If you’ve seen Zorn’s
Lemma before, then the argument is rather routine. If you haven’t, then it’s not. The details
aren’t so important.

Now we can use ultrafilters to define limits of sequences.

Definition 4.4. Let X be a set and ω a nonprincipal ultrafilter on N. Two sequences x, y ∈ XN

are ω-equivalent, denoted x ∼ω y, if {i ∈ N : xi = yi} ∈ ω. This defines an equivalence relation
on XN. The ω-ultrapoduct of X is

∏
ωX := XN/ ∼ω. That is, the elements of

∏
ωX are

ω-equivalence classes of elements of XN.

If we set X to be the space of finite simple graphs and fix an ultrafilter ω on N, we can
define the limit limn→∞(Gn) simply as the equivalence class of (Gn) in XN.

See how general this is? We need nothing about the structure of the things we’re taking
limits of. In fact, we could be even more wild and take some set Xα for each α in some infinite
index set I, fix a nonprincipal ultrafilter ω on I, and define

∏
ωXi = (

∏
α∈I Xα)/ ∼ω. Also, it

assigns a limit object to every sequence, not just convergent ones.
One note: Why do we want ω to be nonprincipal? If ω is the principal ultrafilter generated

by a, then
∏
ωX essentially just selects the coordinate with index a, so it’s not good as a limit

definition. A nonprincipal ultrafilter takes the whole sequence into account.
Of course, this definition is very abstract and hard to work with, which is why we won’t

use it. There are other issues, too. For one, the limit depends on the choice of ultrafilter. Let
Gn = Kn if n is odd and Gn = nK1 if n is even. The “limit”

∏
ω Gn is essentially the empty

graph if 2N ∈ ω and the complete graph if 2N /∈ ω. There’s a way to remove this dependence
on the specific choice of ω, but it’s technical and no fun, so we skip it.

One cool application of this type of construction is ultralimits. Again fix an ultralimit ω
on N. We say that a is the ω-ultralimit of (an) ⊆ R if {n ∈ N : |an − a| ≤ ε} ∈ ω for every
ε > 0. This might seem an odd definition, but replacing ω with the cofinite filter recovers the
usual notion of convergence. By upgrading to an ultrafilter, it turns out that every bounded
sequence has an ultralimit. This has a lot of cool applications which we won’t go into here.
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4.3 Graphons

Let’s try again. You know what they say: Third time yields a satisfactory limit object. This
time the starting point is adjacency matrices. One way to visualize an adjacency matrix is to
replace each 0 or 1 with a white or black square, respectively.

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 −−→
We’ll call the picture on the right the wallpaper of the graph because it doesn’t matter what

we call it.12 If we look at the wallpapers for the sequence (Kn), they seem to converge to the
Café noir13 wallpaper:

The picture for half-graphs is similar. The wallpapers for (Hn) are shown below, along with
their “limit” wallpaper.

Based on these examples, it seems that the adjacency matrices of convergent graph sequences
themselves exhibit convergent behavior. But we have to be a bit careful: Adjacency matrices
depend on an ordering of the vertices. If we order the vertices in Kn,n with {1, 2, . . . , n} in one
bipartition and {n+ 1, n+ 2, . . . , 2n} in the other, then the wallpaper looks like for every n.
But if we label one bipartition with even numbers and the other with odd, then the wallpapers
look like

This doesn’t even look like it converges—the white and black mesh just gets finer, but most
points will alternate between black and white infinitely often. The situation is even worse for
random graphs. Wallpapers for (G(n, 1/2)) look like

We know that (G(n, 1/2)) converges, but the corresponding wallpapers don’t look like they
have any pattern at all. Let’s take a step back.

To find a satisfactory limit object, we have to consider a wider class of objects than just
graphs. Since convergence is defined in terms of homomorphism densities of graphs, we’ll start
to do this by generalizing homomorphism density. And this time, we’ll be successful!

Given a statement P , the delta function δ(P ) evaluates as 1 if P is true and 0 if P is false.
We can rewrite the homomorphism density as

t(F,G) =
1

v(G)v(F )

∑
φ : V (F )→V (G)

δ(φ is a homomorphism),

12This is not a standard term.
13An actual shade of black. See wikipedia.org/wiki/Shades of black for other good choices.
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4. limit objects

since the sum counts the number of vertex maps that are homomorphisms. A vertex map is
a homomorphism if and only if it preserves the adjacency of each edge in F , so given some
φ : V (F )→ V (G),

δ(φ is a homomorphism) =
∏

ij∈E(F )

δ
(
φ(i)φ(j) ∈ E(G)

)
.

In all, then

t(F,G) =
1

v(G)v(F )

∑
φ : V (F )→V (G)

∏
ij∈E(F )

δ
(
φ(i)φ(j) ∈ E(G)

)
.

This all seems fairly abstruse, but the benefit is that this formulation of homomorphism density
suggests a generalization. We can interpret the expression

1

v(G)v(F )

∑
φ : V (F )→V (G)

as a Riemann approximation of an integral over a volume 1 set. The expression δ
(
φ(i)φ(j) ∈

E(G)
)

is just a function of two variables. These observations suggest that we might generalize
homomorphism densities in the following way.

Definition 4.5. A kernel is a bounded, symmetric, measurable function W : [0, 1]2 → R. The
homomorphism density of a finite simple graph F in a kernel W is

t(F,W ) :=

∫
[0,1]v(F )

∏
ij∈E(F )

W (xi, xj) dx1 · · · dxv(F ).

The expression for homomorphism density might look a bit daunting, but here’s an interpre-
tation. We think of W as the adjacency matrix for some edge-weighted complete graph on [0, 1].
Each map V (F ) → [0, 1] is weighted by the product of the weights of the edges in its image,
and the homomorphism density of F in W is the average weight of all maps V (F )→ [0, 1].

So how does this generalize homomorphism density for graphs? Choose any graph G on the
vertex set [n]. We define the kernel

WG(x, y) = δ
(
φ(dnxe)φ(dnye) ∈ E(G)

)
.

The kernel WG is a scaled version of the delta function testing φ(i)φ(j) ∈ E(G), where the
interval ( i−1

n , in ] corresponds to vertex i. Then

t(F,WG) =

∫
(0,1]v(F )

∏
ij∈E(F )

WG(xi, xj) dx1 dx2 · · · dxv(F )

=
1

nv(F )

∑
φ : V (F )→V (G)

∏
ij∈E(F )

δ
(
φ(i)φ(j) ∈ E(G)

)
= t(F,G).

The kernel WG is related to the wallpapers we discussed earlier. If we picture the unit square
with the y-axis pointed downward and color the points (x, y) with WG(x, y) = 1 black, then this
image is exactly the wallpaper derived from the adjacency matrix of G. The connection between
kernels and adjacency matrices provides a combinatorial perspective to this limit object which
was missing in the previous two attempts to construct one.
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Definition 4.6. A graphon14 is a symmetric measurable function W : [0, 1]2 → [0, 1]. We
denote by W the set of kernels and by W0 the set of graphons. Sometimes we’ll to consider
those kernels that map [0, 1]2 → [−1, 1]; we’ll denote this set by W1.

The next theorem shows that graphons are “just right” as limit objects.

Theorem 4.7. Given any convergent graph sequence (Gn), there is a graphon W so that
t(F,Gn)→ t(F,W ) for all F ∈ F . Moreover, every graphon is a limit point in this sense.

Definition 4.8. We say that a graph sequence (Gn) converges to the graphon W if t(F,Gn)→
t(F,W ) for every finite simple graph F . More generally, a graphon sequence (Wn) converges
to W if t(F,Wn)→ t(F,W ) for every finite simple graph F .

In the next section we look at distance notions of graphon convergence, which will remedy
the ambiguities present in wallpaper convergence.

We can already determine the limit graphon for several graph sequences.

Example 4.9. From Example 3.2, we have t(F,Kn) → 1 for all F ∈ F . Since t(F,1) = 1
for all F ∈ F , the sequence (Kn) converges to the constant-1 graphon. Similarly, Example 3.4
shows that any sparse graph sequence converges to the identically 0 graphon.

Example 4.10. The graph sequence (Gn) converges to the graphon W if and only if (WGn
)

does, since the homomorphism densities for the two sequences are the same. Define

W (x, y) =

{
1 max{x, y} > 1

2 and min{x, y} < 1
2

0 otherwise.

Then WKn,n
= W for all n ∈ N (up to a set of measure 0). This is constant, so (Kn,n) converges

to W .

Example 4.11. Let Gn = G(n2, p) for some fixed p ∈ (0, 1). From Section 3.2, we have
t(F,Gn) → pe(F ) for all F ∈ F with probability 1. Thus (Gn) converges to the graphon
W (x, y) = p almost surely.

It is important that the limit graphon is not unique. If Gn → W and U is a graphon that
differs from W on a set of measure 0, then Gn also converges to U . This is not too unusual:
In measure theory, we often regard almost-everywhere-equal functions as the same. There are
more delicate problems however. For example, let {x} denote the fractional part of x. Given a
kernel W , we define

W(n)(x, y) = W ({nx}, {ny}).
Then t(F,W ) = t(F,W(n)) for every n ∈ N. We’ll be able to address this after we find a good
metric for graphons in the next section.

Exercise 4.12. Given a kernel W and a simple graph F , the induced homomorphism density
of F in W is

tind(F,W ) =

∫
[0,1]v(F )

∏
ij∈E(F )

W (xi, xj)
∏

ij∈E(F )

(1−W (xi, xj)) dx1 · · · dxv(F ),

where F is the complement of F .15 Show that tind(F,G) 6= tind(F,WG) in general, and convince
yourself that tind(F,WG) is the proportion of not necessarily injective maps V (F )→ V (G) that
preserve both adjacency and non-adjacency.

14An elision of “graph function”.
15That is, V (F ) = V (F ) and ij ∈ E(F ) if and only if i 6= j and ij /∈ E(F ).
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Exercise 4.13. Show that the following formula holds:

tind(F,W ) =
∑
F ′⊇F

V (F ′)=V (F )

(−1)e(F
′)−e(F )t(F ′,W ).

(This just uses the definition of tind.) Then use Möbius inversion to conclude that

t(F,W ) =
∑
F ′⊆F

V (F ′)=V (F )

tind(F,W ).
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5 Graph distances

Now that we have a space of limit objects, our next goal is to find a metric that reflects our
notion of convergence. Unfortunately, there are lots of plausible metrics on graphs, and most
of them aren’t good.16

5.1 Some first attempts

We could just use the metric from before:

d(W1,W2) =

∞∑
k=1

|t(Fk,W1)− t(Fk,W2)|
2k

,

but there are multiple problems with this. Not least, it depends heavily on the ordering of F .
Also, it’s awkward to work with.

The set of kernels is also the L∞ space on [0, 1]2 restricted to symmetric functions, so it
makes sense to consider using an Lp norm. Here’s why that won’t work. If a sequence (Wn)
converges in Lp for p > 1, then it also converges in L1. From Example 4.11, the sequence
(G(n2, 1

2 )) converges to the constant 1/2 graphon almost surely. On the other hand, Wn :=
WG(n2,1/2) takes values only in {0, 1}, so∥∥∥∥Wn −

1

2

∥∥∥∥
1

=

∫
[0,1]2

1

2
dx =

1

2

for all n ∈ N, which means ‖Wn − 1/2‖1 6→ 0 (which is bad). So Lp norms are out.
In some sense, the Lp norms, which compare two kernels pointwise, are too strict; we need

to allow some kind of blurring. One very common way to do this (for example, in probability
theory) is called weak convergence.

Definition 5.1. A sequence of measures (µn) on a metric space Ω weakly converges to the
measure µ if for all continuous bounded functions f : Ω→ R, we have

∫
Ω
f dµn →

∫
Ω
f dµ.

Example 5.2. Let Ω = [0, 1] with the standard metric. Set Qn = { kn ∈ Q : 1 ≤ k < n} and
define µn(A) = 1

n |A∩Qn|. Then
∫

Ω
f dµn is the usual Riemann integral approximation, which

converges to
∫ 1

0
f dx. Thus (µn) converges to the standard measure on [0, 1].

Weak convergence does a good job at blurring: Each of the measures µn in the previous
example is discrete, but the limit is not. Unfortunately, it’s too good. Revisiting a problem
we had with wallpapers, order the vertices of Kn,n so that one bipartition contains all the
even labels and the other contains all the odd labels. Then WKn,n is a chessboard, and it
weakly converges to the constant 1

2 graphon! This is of course a problem, since we don’t want
relabelling to affect convergence, so let’s abandon this notion, too.17

A good metric will instead come from the graph side of things. One of the most common
metrics on graphs is called the edit distance. If G1 and G2 are two graphs with the same vertex
set, then their edit distance is

d1(G1, G2) =
|E(G1)4E(G2)

v(G)2
,

16In this setting.
17Szia!
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the number of edges we need to add or delete to turn G1 into G2. (Here 4 denotes the
symmetric difference of two sets.) This definition can be extended to two arbitrary graphs, but
it suffers from the same problem that the Lp metrics do—it doesn’t allow enough blurring.

The good stuff, it turns out, is something called the cut distance, which measures, in some
sense, the global similarity between two graphs. We turn to that next.

5.2 The cut distance and cut norm

5.2.1 Graphs

We build up to the cut distance in steps.

Definition 5.3. Let G1 and G2 be two graphs on the same vertex set V of size n. For each
S, T ⊆ V , we define eG(S, T ) = |{ij ∈ E(G) : i ∈ S and j ∈ T}|, the number of edges with one
endpoint in S and the other in T . (Here, order of endpoints matters, so eG(S, S) is twice the
number of edges in G[S].) The labelled cut distance between G1 and G2 is

d�(G1, G2) = max
S,T⊆V

|eG1(S, T )− eG2(S, T )|
n2

.

It might seem odd to divide by n2 instead of |S||T |. But this would in fact result in the
discrete metric: If G1 6= G2, then setting S = {u} and T = {v} where uv ∈ E(G1) and
uv 6∈ E(G2) gives d�(G1, G2) = 1 (since d�(G1, G2) ≤ 1 for any two graphs).

Next we compare two unlabelled graphs, which we do by finding the “optimal overlay”.

Definition 5.4. Let G1 and G2 be two graphs with n vertices, but with possibly different
vertex sets. For a bijection φ : V (G1) → V (G2), we let Gφ1 denote the result of relabelling

G1 according to φ. (That is, Gφ1 has vertex set V (G2) and φ(i)φ(j) ∈ E(Gφ1 ) if and only if
ij ∈ E(G1).) We define

δ̂�(G1, G2) = min
φ
d�(Gφ1 , G2),

where the minimum ranges over all bijections φ : V (G1)→ V (G2).

Now we need to find a way to compare two graphs on a different number of vertices.

Definition 5.5. Let G be a graph and n ∈ N. The blowup of G by n is the graph G(n) with
vertex set V (G)× [n] and edge set E(G(n)) = {(i, a)(j, b) : ij ∈ E(G)}.

In other words, we replace each vertex of G by an independent set of size n and then connect
the independent sets as in G. We use this to give the definitive definition of cut distance.

Definition 5.6. Let G1 and G2 be graphs with n1 and n2 vertices, respectively. The cut
distance between G1 and G2 is

δ�(G1, G2) = inf
n1N1=n2N2

δ̂�(G1(N1), G2(N2)).

If G1 and G2 have the same number of vertices, it is not clear (and in fact not true) that

δ̂�(G1, G2) = δ�(G1, G2). It more obvious that for two graphs G1 and G2 on the same vertex

set d�(G1, G2) is not necessarily equal to δ̂�(G1, G2). In general, we have

δ�(G1, G2) ≤ δ̂�(G1, G2) ≤ d�(G1, G2)

whenever the individual distances make sense.
Reverse inequalities between δ� and δ̂� are limited. It seems like the two should not be

that different, which leads to the following conjecture.
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Conjecture 5.7 (Lovász). There exists an absolute constant C > 0 so that δ̂�(G1, G2) ≤
Cδ�(G1, G2) for all graphs G1 and G2.

The best known result is far from this: In Theorem 2.3 of [1], the authors proved that

δ̂�(G1, G2) ≤ 32δ�(G1, G2)1/67.

(Recall that these distances are in the set [0, 1], so δ�(G1, G2)1/67 is quite large.)

There is in fact another problem: Although d� and δ̂� are metrics, δ� is not. If, for example,
G2 = G1(2), then δ�(G1, G2) = 0, but clearly G1 6∼= G2. In fact, this is essentially the example
that shows limit graphons are not unique: If W = WG, then W(n) = WG(n) (if the vertices in
G(n) are ordered correctly).

Exercise 5.8. Show that δ� satisfies the triangle inequality.

So: Why is the cut distance good? Because convergence with respect to δ� is exactly
convergence in homomorphism density.

Theorem 5.9. The graph sequence (Gn) is convergent if and only if it is Cauchy with respect
to δ�.

5.2.2 Norms

The cut distance can be recontextualized in terms of matrix norms.

Definition 5.10. Let A be an n× n matrix. The `1-norm of A is

‖A‖1 =
1

n2

n∑
i,j=1

|ai,j |.

The cut norm of A is

‖A‖� =
1

n2
max
S,T⊆[n]

∣∣∣∣∣∣
∑
i∈S
j∈T

ai,j

∣∣∣∣∣∣.
It is straightforward to check that both ‖ · ‖1 and ‖ · ‖� are, in fact, norms. If we set A1

and A2 as the adjacency matrices of two graphs G1 and G2 on the vertex set [n], then the edit
distance is

d1(G1, G2) = ‖A1 −A2‖1.

Similarly, the labelled cut distance is

d�(G1, G2) = ‖A1 −A2‖�,

and the cut distance δ� can be recovered through bijections of [n] and blowups.

Exercise 5.11. Show the following relations between ‖A‖1 and ‖A‖� for any n×n matrix A.
(Find a simpler argument for (2) than (3).)

1. ‖A‖� ≤ ‖A‖1
2. ‖A‖1 ≤ n2‖A‖�
3. ‖A‖1 ≤ 2n‖A‖�

To simplify notation, we denote
∑

i∈S
j∈T

ai,j by A(S, T ). By restricting the possible sets S

and T , we can estimate the cut norm to within a constant factor.
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Exercise 5.12. Let A be a symmetric n× n matrix. For each S ⊆ P([n])2, we define ‖A‖S =
1
n2 max(S,T )∈S |A(S, T )|. (Then ‖A‖� = ‖A‖S when S = P([n])2.) We have ‖A‖S ≤ ‖A‖� for
all S. Prove that

1. ‖A‖� ≤ 4‖A‖S when S = {(S, T ) : |S|, |T | ≤ dn/2e}.
2. ‖A‖� ≤ 2‖A‖S when S = {(S, S) : S ⊆ [n]}.
3. ‖A‖� ≤ 4‖A‖S when S = {(S, T ) : S ∩ T = ∅}.

5.2.3 Kernels

We extend the cut norm to kernels as follows.

Definition 5.13. The cut norm of W ∈ W is

‖W‖� = sup
S,T⊆[0,1]

∣∣∣∣∣∣
∫

S×T

W (x, y) dxdy

∣∣∣∣∣∣ ,
where the supremum is taken over all measurable sets S and T .

The cut norm satisfies the triangle inequality, dilation by real numbers, and is nonnegative.
If ‖W‖� = 0, then W is zero almost everywhere; following the conventions of measure theory,
we consider two almost-everywhere-equal functions equal. So the cut norm is indeed a norm.

For every measurable S, T ⊆ [0, 1], we defineW (S, T ) =
∫
S×T W , so ‖W‖� = supS,T |W (S, T )|.

The characteristic function of a set A is χA(x) = δ(x ∈ A). We denote the set of kernels
W : [0, 1]2 → [−1, 1] by W1. A kernel W is in W1 if and only if there exist two graphons
W1,W2 ∈ W0 so that W = W1 −W2.

Definition 5.14. For each p ≥ 1, the Lp norm of a kernel W is

‖W‖p =

( ∫
[0,1]2
|W |p

)1/p

.

Exercise 5.15. Show that ‖W‖� ≤ ‖W‖1 ≤ ‖W‖2 for all kernels W . (The second inequality
is just Cauchy-Schwarz.)

Definition 5.16. Let A be a symmetric n× n matrix. The kernel WA is defined by

WA(x, y) = adnxe,dnye.

In particular, if A is the adjacency matrix of G, then WA = WG.

Exercise 5.17. Let P = {V1, . . . , Vk} be a partition of [0, 1] into finitely many measurable
sets. Show that for any graphon W that is constant on the sets Vi × Vj ,

‖W‖� = max


∣∣∣∣∣∣
∫

S×T

W (x, y) dxdy

∣∣∣∣∣∣ : S, T are unions of elements of P

 .

Use this to show that if A is a symmetric square matrix, then ‖A‖� = ‖WA‖�.

To get the cut distance from the cut norm, we need to “unlabel” the graphons, which we
do with bijections of the “vertex set” [0, 1].
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Definition 5.18. The cut distance between two kernels W1 and W2 is

δ�(W1,W2) = inf
φ : [0,1]→[0,1]

‖Wφ
1 −W2‖�,

where Wφ(x, y) := W (φ(x), φ(y)) and the infimum is taken over all measure-preserving bi-
jections φ. We define the cut distance between a graph G and a kernel W as δ�(G,W ) =
δ�(WG,W ).

It’s important that the cut distances for graphs and their corresponding kernels agree.

Proposition 5.19. δ�(G,H) = δ�(WG,WH) for all finite graphs G and H.

The proof is rather technical and really no fun, but an outline of it appears in Section A.2
if you really must see it. The following theorem explains the key relationship between cut
distance and convergence in homomorphism density in the space of kernels.

Theorem 5.20. The sequence (Wn) ⊆ W converges to the kernel W ∈ W (that is, t(F,Wn)→
t(F,W ) for every graph F ∈ F) if and only if δ�(Wn,W )→ 0.

As with the cut distance for graphs, the cut distance for kernels is only a pseudometric.
This time, we get around it by cheating.

Definition 5.21. Two kernels are weakly isomorphic if their cut distance is 0. An equivalence
class of weakly isomorphic kernels is called an unlabelled kernel, and the set of all unlabelled
kernels is denoted W̃. The sets W̃0 and W̃1 are obtained fromW0 andW1 in the same manner.

Voilà! The cut distance is a metric on the space W̃. We can alternatively define two kernels
U and W to be weakly isomorphic if t(F,U) = t(F,W ) for every finite graph F . This is
equivalent by Theorem 5.20.

Add note about measure-preserving bijections definition
of weak convergence
Exercise 5.22. Show that the kernel cut distance satisfies the triangle inequality.

Exercise 5.23. Let Tn denote the threshold graph on the vertex set [n], with ij ∈ E(Tn) if
and only if i + j ≤ n. Define the threshold graphon by W (x, y) = δ(x + y ≤ 1). Show that
δ�(Tn,W )→ 0 as n→∞.

Exercise 5.24. Let Hn denote the half-graph on n vertices. Find a graphon W so that
δ�(Hn,W )→ 0 as n→∞.

5.2.4 Cut norm of Erdős-Rényi random graphs

The goal of this section is to show that (G(n, p)) converges to the constant p graphon in the
cut distance with probability 1. To do that, we’ll need some more probability.

Proposition 5.25 (Chernoff’s bound). For any real random variable X and λ ∈ R,

P(X ≥ α) ≤ e−λαE[eλX ].

Proof. The exponential function is monotonic, so P(X ≥ α) = P(eλX ≥ eλα). Now apply the
probabilist’s favorite tool—Markov’s inequality.
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We first prove the special case p = 1/2. The following proof contains the key ideas for the
more general theorems later in this section.

Theorem 5.26. Let Gn = G(n, 1/2) and W be the constant 1/2-graphon. With probability 1,
‖WGn

−W‖� → 0 as n→∞.

Proof. For each n ∈ N, let {X(n)
i,j }1≤i<j≤n be a collection of independent identically distributed

random variables that are 0 or 1 with equal probability. We let An be the adjacency matrix of
Gn, so that

(An)i,j =


X

(n)
i,j if i < j

0 if i = j

X
(n)
j,i if i > j.

We will suppress the superscripts on Xi,j . From Exercise 5.17, we can write ‖Wn −W‖� as
the matrix cut norm ‖An − 1

2‖�. Let Bn = An − 1
2 and Yi,j = Xi,j − 1

2 . We want to show that
‖Bn‖� is small with high probability. To do that, we need to show that |Bn(S, S)| is small with
high probability for each S ⊆ [n]. (We can assume the sets are the same by Exercise 5.11.) Fix
some S ⊆ [n]. Since E[Xi,j ] = 1/2, we have E[Bn(S, S)] = 0. From the definition,

Bn(S, S) = 2
∑
i,j∈S
i<j

Yi,j .

Applying Chernoff’s bound shows

P(Bn(S, S) ≥ α) = P
( ∑
i,j∈S
i<j

Yi,j ≥
α

2

)
≤ e−λα/2 E

[
exp

(
λ
∑
i,j∈S
i<j

Yi,j

)]
,

and since the Yi,j are independent and identically distributed, this is equal to

e−λα/2
∏
i,j∈S
i<j

E[exp(λYi,j)] = e−λα/2 E[exp(λYi,j)]
(|S|2 ).

We can explicitly calculate the expected value:

E[exp(λYi,j)] =
1

2
(e−λ/2 + eλ/2).

For any t ∈ R,

1

2
(e−t + et) =

∞∑
k=0

t2k

(2k)!
≤
∞∑
k=0

t2k

2kk!
= et

2/2,

so in particular E[exp(λYi,j)] ≤ exp(λ2/8). In all, then,

P
(
Bn(S, S) ≥ α

)
≤ exp

(
−λ

2
α+

λ2

8

(
|S|
2

))
.

Since P
(
Bn(S, S) ≤ −α

)
= P

(
−Bn(S, S) ≥ α

)
, and Bn(S, S) is symmetric about 0, we have

P
(
Bn(S, S) ≤ −α

)
= P

(
Bn(S, S) ≥ α

)
. In other words,

P
(
|Bn(S, S)| ≥ α

)
≤ 2 exp

(
−λ

2
α+

λ2

8

(
|S|
2

))
.
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The inequality holds for all λ ∈ R, so we choose λ to minimize the right-hand side. The
expression in the exponent is a quadratic, which is minimized at λ = 2α/

(|S|
2

)
. Together with

the inequality
(|S|

2

)
≤ n2/2, this yields

P
(
|Bn(S, S)| ≥ α

)
≤ 2 exp

(
− α2

2
(|S|

2

)) ≤ 2 exp

(
−α

2

n2

)
.

From part (2) of Exercise 5.12, we have

P
(
‖Bn‖� ≥ 2n−1/2

)
≤ P

(
|Bn(S, S)| ≥ n3/2 for some S ⊆ [n]

)
,

so setting α = n3/2 gives

P
(
‖Bn‖� ≥ 2n−1/2

)
≤
∑
S⊆[n]

2e−n = 2

(
2

e

)n
.

Applying the Borel-Cantelli lemma (Theorem 3.9) shows that ‖Bn‖� ≤ 2n−1/2 for all but
finitely many n ∈ N with probability 1. So ‖Bn‖� → 0 almost surely.

As a corollary, we can derive that the L1-norm for kernels cannot be upper-bounded by the
cut norm, even for kernels with bounded range.

Corollary 5.27. There is no absolute constant C > 0 so that ‖W‖1 ≤ C‖W‖� for all kernels
W ∈ W1.

Proof. Fix a graph sequence (Gn) with ‖WGn
− 1

2‖� → 0 (which exists by the previous theorem).
We set Wn = WGn

− 1
2 . Then ‖Wn‖1 = 1

2 for all n ∈ N, but ‖Wn‖� → 0 as n→∞, so for any
C > 0, some Wn with large enough n provides a counterexample.

In fact, the proof shows that any graph sequence that converges to a graphon that has
values other than {0, 1} on a set of positive measure provides a counterexample.

The argument used in the previous proof can be generalized.

Theorem 5.28 (Hoeffding’s inequality). Assume that {X1, . . . , Xk} is an collection of inde-

pendent random variables such that ai ≤ Xi ≤ bi for each 1 ≤ i ≤ r. If Z =
∑k
i=1Xi, then for

any

P(|Z − E[Z]| > α) ≤ 2 exp

(
−α2

2
∑k
i=1(bi − ai)2

)
.

Proof. We set Yi = Xi − E[Xi], so Z − E[Z] =
∑k
i=1 Yi. As in the previous proof, Chernoff’s

bound and the fact that the Yi are i.i.d. yields

P

(
k∑
i=1

Yi ≥ α

)
≤ e−λα

k∏
i=1

E[eλYi ]. (5.1)

The main new step is to bound E[eλYi ]. We do this with a trick. Let di = bi − ai and
t = (1 + Yi/di)/2. We can write λYi as the convex combination tdi + (1− t)(−di); since eλx is
convex, this gives

eλYi ≤ teλdi + (1− t)e−λdi =
1

2
(eλdi + e−λdi) +

Yi
2di

(eλdi − e−λdi).
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Taking expectations on both sides and noting that E[Yi] = 0 gives

E[eλYi ] ≤ 1

2
(eλdi + e−λdi) ≤ eλ

2d2i /2.

We can therefore upper bound Equation (5.1) as

P

(
k∑
i=1

Yi ≥ α

)
≤ exp

(
−λα+

λ2

2

k∑
i=1

d2
i

)
.

Choosing λ = α/
∑k
i=1 d

2
i gives

P

(
k∑
i=1

Yi ≥ α

)
≤ exp

(
−α2

2
∑k
i=1 d

2
i

)
.

The same argument applies to P
(∑k

i=1 Yi ≤ −α
)

, and adding the two yields the theorem.

With some more involved calculations, it’s possible to improve the bound slightly to

P(|Z − E[Z]| > α) ≤ 2 exp

(
−2α2∑k

i=1(bi − ai)2

)
.

This is the version that is most often cited as Hoeffding’s inequality.

Theorem 5.29. Fix p ∈ (0, 1). Let Gn = G(n, p) and W be the constant p graphon. With
probability 1, ‖WGn

−W‖� → 0 as n→∞.

Proof. For n ∈ N and 1 ≤ i < j ≤ n, we let X
(n)
i,j be the random variable that is 1 with

probability p and 0 with probability 1 − p. We let An be the n × n matrix as defined in the
proof of Theorem 5.26 and set Bn = An − p. Hoeffding’s inequality applied to the variables

X
(n)
i,j for i, j ∈ S ⊆ [n] yields

P(|Bn(S, S)| ≤ 2 exp

(
− α2

2
(|S|

2

)) .
From here, the proof is exactly the same as in Theorem 5.26.

Exercise 5.30. For p ∈ (0, 1) and α ∈ R, we define B(n, α, p) to be the random bipartite
graph with vertex set {x1, . . . , xn, y1, . . . , ybαnc} where each edge xiyj appears independently
with probability p. Show that for fixed α and p, the sequence (B(n, α, p)) converges to the
graphon

W (x, y) =

{
p max{x, y} > 1

2 and min{x, y} < 1
2

0 otherwise.

in cut distance with probability 1.
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5.2.5 All graphons are limit points

This section outlines a proof that every graphon is the limit of some graph sequence (with
respect to the cut distance).

Definition 5.31. A kernel W : [0, 1]2 → R is a called a step function with k steps if there
exists a finite partition {V1, . . . , Vk} of [0, 1] so that W is constant on each rectangle Vi × Vj .
A function s : [0, 1]2 → R is called simple if it can be expressed as a linear combination of
characteristic functions of measurable sets, i.e. as

∑n
i=1 aiχAi

.

Exercise 5.32. Prove the following statements.
1. For every W ∈ W, there is a sequence (sn) of simple functions so that

∫
|W −sn| dm→ 0.

2. For every measurable set A ⊆ [0, 1]2 and ε > 0, there is a finite collection R1, . . . , Rm of
axis-parallel squares so that m(A4

⋃m
i=1Rm) < ε. (Hint: It may be helpful to use that

m(A) = inf{m(U) : U ⊇ A and U is open} for every measurable set A ⊆ [0, 1]2.)
3. For every symmetric characteristic function χA, there is a sequence (Wn) of step functions

so that
∫
|χA −Wn| dm→ 0.

4. For every symmetric simple function s, there is a sequence (Wn) of step functions so that∫
|s−Wn| dm→ 0.

5. Step functions are dense in W with respect to the L1 norm.
6. For every partition {V1, . . . , Vk} of [0, 1], there is a measure-preserving bijection φ : [0, 1]→

[0, 1] (up to a set of measure 0) so that φ(Vj) is an interval for each 1 ≤ j ≤ k.
7. Let W : [0, 1]2 → [0, 1] be a step function with the partition {V1, . . . , Vk} and φ be as

in part (6). There is a graph sequence (Gn) such that ‖WGn
− Wφ‖� → 0. (Use

Theorem 5.29 and Exercise 5.30.)
8. For every graphon W there is a graph sequence (Gn) so that δ�(Gn,W )→ 0.

We can replace steps (1) – (5) with a quicker proof of (5) that uses Lusin’s theorem.

Exercise 5.33. (A special case of) Lusin’s theorem states that for any Lebesgue-measurable
function f : [0, 1]2 → R and ε > 0, there exists a continuous function g : [0, 1]2 → R so that
m({x ∈ [0, 1]2 : f(x) 6= g(x)}) < ε and sup|g(x)| ≤ sup|f(x)|, where m denotes the Lebesgue
measure. Use Lusin’s theorem to show that for any kernel W , there is a sequence of step
functions that converges to W in the L1 norm. (Recall that every kernel is bounded.)

Alternatively, the fact that step functions are dense in W with respect to the cut norm
follows from the Weak Regularity Lemma (Theorem 7.1), which is a sufficient replacement for
step (5).
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6 Cut distance and homomorphism density

Our goal for the next two sections is to elucidate the connections between graphs, graphons,
homomorphism density, and cut distance. In Section 5.2.5, we showed that every graphon is
the limit of some graph sequence. In this section, we connect cut distance to homomorphism
density by proving that a graphon sequence (Wn) converges to a graphon W in homomorphism
density (that is, t(F,Wn)→ t(F,W ) for every finite simple graph F ) if and only if it converges
in cut distance (δ�(Wn,W )→ 0). In Section 7, we prove that every convergent graph sequence
has a limit graphon by showing that the space of graphons is compact.

Together, the Counting and Inverse Counting Lemmas prove Theorem 5.20.

6.1 Counting Lemma

The counting lemma gives a bound on the difference of homomorphism densities of two kernels
based on their cut distance. To prove it, we need a reformulation of the cut norm.

Lemma 6.1. For any kernel W ∈ W,

‖W‖� = sup
S,T⊆[0,1]

∣∣∣∣∣∣
∫

S×T

W (x, y)

∣∣∣∣∣∣ = sup
f,g : [0,1]→[0,1]

∣∣∣∣∣∣∣
∫

[0,1]2

f(x)W (x, y)g(y)

∣∣∣∣∣∣∣ .
Proof. For every pair S, T ⊆ [0, 1], we can set f = χS and g = χT , which shows that the
left integral is at most the right. Let H(f, g) = |

∫
[0,1]2

f(x)W (x, y)g(y)|. To prove the reverse

inequality, choose any ε > 0 and pick a pair of functions f, g : [0, 1] → [0, 1] so that H(f, g) >
supH − ε. We define new functions f1, f2 : [0, 1]→ [0, 1] by

f1(x) =

{
1 if f(x) > 1

2

0 if f(x) ≤ 1
2

and f2(x) =

{
2f(x)− 1 if f(x) > 1

2

2f(x) if f(x) ≤ 1
2 ,

and g1, g2 similarly. Thus f = 1
2 (f1 + f2) and g = 1

2 (g1 + g2). By the triangle inequality,

supH − ε < H(f, g) ≤ 1

4

(
H(f1, g1) +H(f1, g2) +H(f2, g1) +H(f2, g2)

)
.

Each term on the right is at most supH, so H(f1, g1) > supH − 4ε. Setting S = f−1
1 (1) and

T = g−1
1 (1), we have ∣∣∣∣∣∣

∫
S×T

W (x, y)

∣∣∣∣∣∣ = H(f1, g1) > supH − 4ε.

Because ε was arbitrary, this implies that∣∣∣∣∣∣
∫

S×T

W (x, y)

∣∣∣∣∣∣ ≥ sup
f,g : [0,1]→[0,1]

∣∣∣∣∣∣∣
∫

[0,1]2

f(x)W (x, y)g(y)

∣∣∣∣∣∣∣ .
In fact, both suprema are attained (they are actually maximums). To prove this requires

some functional analysis that has been banished to the appendix (see Section A.3).
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Theorem 6.2 (Counting Lemma). Let F be a finite simple graph. For any two graphons
U,W ∈ W0,

|t(F,U)− t(F,W )| ≤ e(F )δ�(U,W ).

Proof. It suffices to prove that |t(F,U)− t(F,W )| ≤ e(F )‖U −W‖�. Since t(F,W ) = t(F,Wφ)
for any measure-preserving bijection φ : [0, 1] → [0, 1], replacing W by Wφ and taking the
infimum over φ yields the desired inequality.

The left-hand side expands as∣∣∣∣∣∣∣
∫

[0,1]e(F )

 ∏
ij∈E(F )

U(xi, xj)−
∏

ij∈E(F )

W (xi, xj)

 dx

∣∣∣∣∣∣∣ . (6.1)

To work with this expression, we pull a trick from analysis. In proving that lim anbn = ab for
convergent real sequences an → a and bn → b, we want to bound the inequality |anbn − ab|,
which also the absolute value of a difference of products. The solution is to add a “ghost term”
anb− anb and use the triangle inequality to get

|anbn − ab| ≤ an|bn − b|+ b|an − a|,

which we can bound and finish the proof. The same trick works for larger products; we just
need to introduce more ghost terms. Order the edges in F as e1, . . . , ee(F ), where edge ek has
endpoints pk and qk. We use this phantasmal18 trick to rewrite (6.1) as∣∣∣∣∣∣∣

∫
[0,1]e(F )

e(F )∑
k=1

 k∏
i=1

U(xpi , xqi)

e(F )∏
i=k+1

W (xpi , xqi)−
k−1∏
i=1

U(xpi , xqi)

e(F )∏
i=k

W (xpi , xqi)

 dx

∣∣∣∣∣∣∣ .
By factoring, using linearity, and applying the triangle inequality, we get

|t(F,U)−t(F,W )| ≤
e(F )∑
k=1

∣∣∣∣∣∣∣
∫

[0,1]e(F )

(
U(xpk , xqk)−W (xpk , xqk)

) k−1∏
i=1

U(xpi , xqi)

e(F )∏
i=k+1

W (xpi , xqi) dx

∣∣∣∣∣∣∣ .
To finish the proof, we show that each term of this sum is at most ‖U −W‖�. At this point,
the main hurdle is notation. To clean it up a bit, for each k we define

W
(k)
i =

{
U if i ≤ k − 1

W if i ≥ k + 1,

so that

|t(F,U)− t(F,W )| ≤
e(F )∑
k=1

∣∣∣∣∣∣∣
∫

[0,1]e(F )

(
U(xpk , xqk)−W (xpk , xqk)

)∏
i 6=k

W
(k)
i (xpi , xqi) dx

∣∣∣∣∣∣∣ . (6.2)

For each v ∈ V (F ), we let ∇(v) denote the set of indices of edges adjacent to v. We define

fk(x) =
∏

j∈∇(pk)\{k}

W
(k)
j (xpj , xqj ) and gk(x) =

∏
j∈E(F )\∇(pk)

W
(k)
j (xpj , xqj ).

18phantastic?
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6. cut distance and homomorphism density

The functions fk and gk partition the product
∏
i 6=kW

(k)
i (xpi , xqi), so the kth term in the sum

of (6.2) becomes ∣∣∣∣∣∣∣
∫

[0,1]e(F )

fk(x)
(
U(xpk , xqk)−W (xpk , xqk)

)
gk(x) dx

∣∣∣∣∣∣∣ . (6.3)

Temporarily fix all variables except xpk and xqk . Then fk is a function of only xpk and gk is a
function of only xqk . The integral (6.3) is bounded above by

∫
[0,1]e(F )−2

∣∣∣∣∣∣∣
∫

[0,1]2

fk(x)
(
U(xpk , xqk)−W (xpk , xqk)

)
gk(x) dxpkdxqk

∣∣∣∣∣∣∣ dx.
The inner integral is bounded above by ‖U −W‖� by Lemma 6.1. Integrating with respect to
the remaining variables shows that each term of (6.2) is at most ‖U −W‖�.

Corollary 6.3. If (Wn) ⊆ W0 converges to a graphon W ∈ W0 with respect to δ�, then
t(F,Wn)→ t(F,W ) for every finite graph F .

In fact, this statement holds for any convergent uniformly bounded sequence of kernels; this
is the content of Exercise 6.4.

We proved in Theorem 5.29 that δ�(G(n, p), p) → 0 with probability 1, so the Counting
Lemma (finally!) shows that (G(n, p)) is almost surely a convergent graph sequence, in the sense
that t(F,G(n, p))→ pe(F ) for every finite graph F with probability 1. Together with Exercises
5.23 and 5.24, the Counting Lemma also shows that the threshold graphs and half-graphs are
convergent graph sequences.

Exercise 6.4. Prove that

‖W‖� ≤ sup
f,g : [0,1]→[−1,1]

∣∣∣∣∣∣∣
∫

[0,1]2

f(x)W (x, y)g(y)

∣∣∣∣∣∣∣ ≤ 4‖W‖�.

Use this to show that |t(F,U) − t(F,W )| ≤ 4e(F )δ�(U,W ) for every graph F and kernels
U,W ∈ W1. What if U,W : [0, 1]2 → [−K,K]?

Exercise 6.5. A W0-decorated graph (F,w) is a simple graph F with a map w that assigns a
graphon We to each edge e. The homomorphism density of a W0-decorated graph (F,w) is

t(F,w) =

∫
[0,1]v(F )

∏
ij∈E(F )

Wij(xi, xj) dx1 · · · dxv(F ).

For example, if We = W for every e ∈ E(F ), then t(F,w) = t(F,W ). Show that if (F, u) and
(F,w) are two W0-decorated graphs (with the same underlying graph) that

|t(F, u)− t(F,w)| ≤ e(F )
∑

e∈E(F )

‖Ue −We‖�.

(This only requires a small modification to the proof of the Counting Lemma.)

Exercise 6.6. Prove that for every pair U,W ∈ W0,

|tind(F,U)− tind(F,W )| ≤
(
v(F )

2

)
‖U −W‖�.

(See Exercise 4.12.)
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6. cut distance and homomorphism density

6.2 Inverse Counting Lemma

Now we want to show that two graphons with similar homomorphism densities are close in the
cut distance.

Theorem 6.7 (Inverse Counting Lemma). Assume U,W ∈ W0. If |t(F,U)− t(F,W )| ≤ 2−k
2

for every simple graph F with k vertices, then

δ�(U,W ) ≤ 50√
log k

.

The proof of this relies on the Second Sampling Lemma in Section 8 and is a bit technical,
so we omit it. The key consequence of the Inverse Counting Lemma is the following.

Corollary 6.8. Let (Wn) ⊆ W0 and W ∈ W0. If t(F,Wn) → t(F,W ) for every finite simple
graph F , then δ�(Wn,W )→ 0.

With the (Inverse) Counting Lemmas in hand, we can freely switch between convergence
with respect to δ� and with respect to homomorphism density.

Problem 6.9. Find a proof of the Inverse Counting Lemma that does not rely on the Second
Sampling Lemma. (I don’t know of any, but I’d love to see one!)
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7. compactness of graphon space

7 Compactness of graphon space

7.1 Regularity partitions

As a consequence of Exercise 5.32, every kernel can be approximated arbitrarily well by step
functions. Kernels cannot, however, be uniformly approximated by step functions. In fact,
even graphons cannot be uniformly approximated. By this, we mean that the error in a step
function approximation of a kernel depends not only on the number of steps, but also the kernel
itself. In contrast, uniform approximation is possible in the cut norm.

Theorem 7.1 (Weak Regularity Lemma for Kernels). For every kernel W and k ∈ N there is
a step function U with k steps so that

‖W − U‖� ≤
2√

log2 k
‖W‖2.

Since ‖W‖2 ≤ 1 when W ∈ W0, this means that graphons (or any other subset of W with
bounded range) are uniformly approximable by step functions. We prove the theorem using
the following lemma.

Lemma 7.2. For any W ∈ W and k ∈ N there exist 2k sets S1, . . . , Sk, T1, . . . , Tk ⊆ [0, 1] and
k real numbers a1, . . . , ak so that∥∥∥∥∥W −

k∑
i=1

aiχSi×Ti

∥∥∥∥∥ ≤ 1√
k
‖W‖2.

To make the proof easier to follow, we will use the result of Proposition A.7. Exercise 7.3
walks through a way to prove a result that’s almost as strong (and good enough for our purposes)
without resorting to functional analysis mumbo-jumbo.

Proof of Lemma 7.2. Let S, T ⊆ [0, 1] so that ‖W‖� = |
∫
S×T W |. Since ‖W‖� = ‖−W‖�, we

may assume that
∫
S×T W is nonnegative. For every a ∈ R,

‖W − aχS×T ‖22 =

∫
[0,1]2

(W (x, y)− aχS×T (x, y))2 dxdy

= ‖W‖22 − 2b

∫
S×T

W dxdy + b2m(S)m(T )

= ‖W‖22 − 2b‖W‖� + b2m(S)m(T ),

wherem denotes the Lebesgue measure. This expression is minimized at b = W (S, T )/m(S)m(T ),
where

‖W − bχS×T ‖22 = ‖W‖22 −
1

m(S)m(T )
‖W‖2� ≤ ‖W‖22 − ‖W‖2�.

Now set W1 = W and b1 = b, as well as S1 = S and T1 = T . We inductively define Wi =
Wi−1 − biχSi×Ti , where bi, Si, and Ti are chosen so that ‖Wi‖22 ≤ ‖Wi‖22 − ‖Wi‖2�, which we
just showed can always be found. Recursively expanding the inequality for i = k gives∥∥∥∥∥W −

k∑
i=1

biχSi×Ti

∥∥∥∥∥
2

2

≤ ‖W‖22 −
k∑
i=1

‖Wi‖2�.
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7. compactness of graphon space

The left-hand side is nonnegative, so
∑k
i=1 ‖Wi‖2� ≤ ‖W‖22. In particular, there is an m ∈

{1, 2 . . . , k} so that ‖Wm‖2� ≤
1
k‖W‖

2
2. Defining ai = bi for i ≤ m and ai = 0 for i > m finishes

the proof, since Wm = W −
∑k
i=1 aiχSi×Ti

.

Now we can prove the theorem.

Proof of Theorem 7.1. For k = 1, the theorem is nonsensical; for 2 ≤ k ≤ 4, taking U = 0
works. For the rest of the proof we assume that k ≥ 5. Set r = b(log2 k)/2c and apply
Lemma 7.2 to obtain sets S1, . . . , Sr, T1, . . . , Tr and real numbers a1, . . . , ar so that ‖W −∑r
i=1 aiχSi×Ti‖� ≤ r−1/2‖W‖2. We set U = 1

2

∑r
i=1 ai(χSi×Ti +χTi×Si), which is a symmetric

function that satisfies

‖W − U‖� ≤
1

2

∥∥∥∥∥W −
r∑
i=1

aiχSi×Ti

∥∥∥∥∥
�

+
1

2

∥∥∥∥∥W −
r∑
i=1

aiχTi×Si

∥∥∥∥∥
�

≤

∥∥∥∥∥W −
r∑
i=1

aiχSi×Ti

∥∥∥∥∥
�

,

since W is symmetric.
The sets

⋂2r
i=1Ri where Ri ∈ {Si, Sci } and Rr+i ∈ {Ti, T ci } for 1 ≤ i ≤ r form a partition of

[0, 1], and U is constant on the product of any two of them. Thus, U is a step function with
22r ≤ k steps. Since bx/2c ≥ x/4 for all x ≥ 2 and k > 4, we have

‖W − U‖� ≤
1√

b(log2 k)/2c
‖W‖2 <

2√
log2 k

‖W‖2. .

It can be shown that ⌊
log2 k

2

⌋
≥ log2 k

log2(15)

for all natural numbers k ≥ 4. This improves the constant in Theorem 7.1 from 2 to
√

log2 15.19

Exercise 7.3. This exercise proves a version of Theorem 7.1 for graphons without any func-
tional analysis hocus-pocus.

1. Without assuming that the cut norm is attained by a pair of sets, prove the following
approximate version of Lemma 7.2: For every kernel W ∈ W, natural number k ∈ N, and
ε > 0, there exist 2k sets S1, . . . , Sk, T1, . . . , Tk ⊆ [0, 1] and k real numbers a1, . . . , ak so
that ∥∥∥∥∥W −

k∑
i=1

aiχSi×Ti

∥∥∥∥∥
�

≤ 1√
k
‖W‖2 + ε.

2. Use part (1) to prove that for every kernel W ∈ W1 and k ∈ N there exists a step function
U with k steps so that ‖W − U‖� ≤ 2(log2 k)−1/2.

One easy way to create a step function from a graphon is to average over the steps.

Definition 7.4. Let P = {V1, . . . , Vk} be a partition of [0, 1] into sets with positive measure.
The stepping of a kernel W with respect to P is kernel WP defined by

WP(x, y) =
1

m(Vi)m(Vj)

∫
Vi×Vj

W (x, y) dxdy when x ∈ Vi × Vj .

Exercise 7.5. Define 〈U,W 〉 =
∫

[0,1]2
U(x, y)W (x, y) dxdy for all kernels U,W ∈ W. Show

that 〈UP ,W 〉 = 〈UP ,WP〉 = 〈U,WP〉.
19For reference,

√
log2 15 ≈ 1.977 and 2 ≈ 2.000. The gain is small, but it’s helpful.
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7. compactness of graphon space

One way to think about WP is as the conditional expectation of W relative to P. We can
also think of it analytically as follows.

The set of step functions with steps in P forms a finite-dimensional subspace of W. From
Exercise 7.5,

〈WP ,W −WP〉 = 0,

so W − WP is orthogonal to W . That is, WP is the orthogonal projection of W onto the
subspace of step functions with steps in P. It follows from the Pythagorean theorem that

‖WP‖22 = ‖W‖22 − ‖W −WP‖22 ≤ ‖W‖22,

so ‖WP‖2 ≤ ‖W‖2. We say that stepping is contractive with respect to the L2 norm.

Exercise 7.6. Show that stepping is contractive with respect to the L1 and cut norms, that
is, that ‖WP‖1 ≤ ‖W‖1 and ‖WP‖� ≤ ‖W‖�. (Exercise 5.17 may be useful.) Also show that
‖W −WP‖� ≤ ‖W‖2.

So, a question: Is the optimal step function approximation of a kernel always a stepping of
that kernel? No, but it’s always close.

Exercise 7.7. Find a kernel W ∈ W1 and a k ∈ N so that the step function with k steps that
best approximates W in the cut norm is not a stepping of W .

Proposition 7.8. If U is a step function with steps in P and W is any kernel, then

‖W −WP‖� ≤ 2‖W − U‖�.

Proof. Using the triangle inequality and that UP = U , we have

‖W −WP‖� ≤ ‖W − U‖� + ‖U −WP‖� = ‖W − U‖� + ‖(U −W )P‖�

Applying contractivity completes the proof.

Combining Proposition 7.8 with Theorem 7.1 proves the following result.

Corollary 7.9. For every kernel W and k ∈ N, there is a partition P of [0, 1] into at most k
sets so that

‖W −WP‖� ≤
4√

log2 k
‖W‖2.

Corollary 7.9 can be strengthened as follows.

Theorem 7.10. For every partition Q of [0, 1] into m sets and k ≥ m, there is a partition P
of [0, 1] into at most k sets that refines Q such that

‖W −WP‖� ≤
4√

log2(k/m)
‖W‖2.

Proof. By Theorem 7.1 (and the remark that follows the proof) there is a step function U on
a partition R with bk/mc steps that refines Q such that

‖W − U‖� ≤
√

log2(15)√
log2(bk/mc)

‖W‖2.
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7. compactness of graphon space

The theorem is trivial if k/m ≤ 216. If k/m ≥ 216, then

log2(bk/mc) ≥ log2(k/m− 1) ≥ log2(216)

log2(216 − 1)
log2(k/m),

from which it follows that ‖W − U‖� ≤ 2(log2(k/m))−1‖W‖2.
The step function U is also a step function on the common refinement of Q and R, defined

as P = {Qi ∩Ri : Qi ∈ Q and Ri ∈ R}. It has at most mbk/mc ≤ k sets. By Proposition 7.8,

‖W −WP‖� ≤ 2‖W − U‖� ≤
4√

log2(k/m)
‖W‖2.

The astute reader may have noticed the modest number 216 in the proof. Indeed, this
theorem (and other versions of the Regularity Lemma) are mainly of theoretical interest: To

guarantee a partition P so that ‖W −WP‖� < ε for all graphons W , we need to allow 216/ε2

sets, quite a large number. But fret not—we won’t be troubling ourselves with any practical
consequences of the Regularity Lemma.

7.2 Szemerédi’s Regularity Lemma

The Weak Regularity Lemma has a graph analogue. To state it, we need to introduce weighted
graphs.

Definition 7.11. A weighted graph on the vertex set V is pair (α, β), where α = (αi)i∈V is a
real vector of vertex weights and β = (βi,j)i,j∈V is a real symmetric matrix of edge weights.

We think of a weighted graph H as the complete graph with loops at each vertex with a
weight αi assigned to the vertex i and βi,j assigned to the edge ij. When α = 1, we call H an
edge-weighted graph and forget about the vertex labels. For edge-weighted graphs, the matrix
(βi,j) is called the (weighted) adjacency matrix.

Definition 7.12. The labelled cut distance between two weighted graphs H = (α, β) and
H ′ = (α′, β′) on the same vertex set V is

d�(H,H ′) =
∑
i∈V
|αi − α′i|+ max

S,T⊆V

∣∣∣∣ ∑
i,j∈V

(αiαjβi,j − α′iα′jβ′i,j)
∣∣∣∣.

This defines a metric on weighted graphs. By considering an ordinary graph G an edge-
labelled graph with βi,j = 1 if ij ∈ E(G) and βi,j = 0 otherwise, this metric specializes as the
previously-defined d� metric for graphs. This metric extends to a δ� metric as before.20 If A1

and A2 are the adjacency matrices of two edge-weighted graphs H1 and H2, respectively, then
d�(H1, H2) = ‖A1 −A2‖�.

Definition 7.13. Let G be a graph. For any subsetsX,Y ⊆ V (G), we let eG(X,Y ) = |{(u, v) ∈
E(G) : u ∈ X and v ∈ Y }| (order matters: if u, v ∈ X ∩ Y , then edge uv is counted twice)
and dG(X, y) = eG(X,Y )/|X||Y |. Given a partition P = {V1, . . . , Vk} of V (G), we create the
edge-weighted graph GP on V (G) with βu,v = dG(Vi, Vj) when u ∈ Vi and v ∈ Vj .

20The blowup of a weighted graph is defined by assigning the cloned vertices the same vertex and edge weights
as the vertex from which they were cloned.
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If A is the adjacency matrix of G, then the adjacency matrix of GP has entries

(AP)u,v =
1

|Vi||Vj |
∑
x∈Vi
y∈Vj

ax,y where u ∈ Vi and v ∈ Vj .

We use this equation as the definition for all matrices, even when A is not an adjacency matrix.

Exercise 7.14. Show that ‖AP‖� ≤ ‖A‖� for every square matrix A.

The graph GP encodes an average over the partition elements of P. In fact, if we identify
the elements of [n] with the intervals of length 1/n in [0, 1], the partition P of [n] induces a
corresponding Q of [0, 1] into intervals, and WGP = WQ.

There is a similar but distinct way to construct an “average” weighted graph. For a partition
P = {V1, . . . , Vk} of V (G), we define the weighted graph G/P on vertex set [k] with αi =
‖Vi‖/v(G) and βi,j = dG(Vi, Vj).

Exercise 7.15. Show that d�(G,G/P) ≤ d�(G,GP).

The graph G/P encodes the graph G with some error. The Weak Regularity Lemma for
Graphs says that we can always choose a partition P so that the error is (relatively) small.

Theorem 7.16 (Weak Regularity Lemma for Graphs). For every graph G and k ≥ 1, there is
a partition P with k elements so that

d�(G,GP) ≤ 4√
log2 k

.

Exercise 7.17. Derive the Weak Regularity Lemma for Graphs from the Weak Regularity
Lemma for Kernels.21 (Hint: show that you can always choose a step function U whose steps
are unions of intervals [k/v(G), (k + 1)/v(G)].)

Since d�(G,G/P) ≤ d�(G,GP), this means that we can approximate G with a weighted
graph of bounded size. The benefit is that the approximation is uniform—the size of the
approximating graph is independent of the size of G. The trade-off, as before, is that to
approximate G with an error of ε, we need 24/ε2 sets. But pish-posh. Finite is finite.

Why is it called the “Weak” Regularity Lemma? It’s not as an insult to its physical prowess.
Rather, a different version of the Regularity Lemma was proven first with a stronger bound.

Definition 7.18. A bipartite graph G with bipartitions A and B is ε-homogeneous if

|eG(X,Y )− dG(A,B)|X||Y | ≤ ε|A||B|

for all X ⊆ A and Y ⊆ B.

So a bipartite graph is ε-homogeneous if its edges are fairly uniformly distributed, meaning
that it can be well-approximated by just the average density dG(A,B).

Theorem 7.19 (Szemerédi’s Regularity Lemma). For every ε > 0 there is a natural number
N(ε) such that every graph G has an equitable partition22 {V1, . . . , Vk} of V (G) with 1/ε ≤ k ≤
N(ε) such that for all but εk2 pairs of indices 1 ≤ i < j ≤ k, the bipartite graph G[Vi, Vj ] is
ε-homogeneous.

21The graph version can also be proven by essentially copying the proof for kernels.
22Meaning the size of each partition element is either bv(G)/kc or dv(G)/ke.
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So both versions of the Regularity Lemma give a uniform approximation for all graphs.
Szemerédi’s version is more powerful—a cut distance bound can be derived that is much stronger
than in the Weak Regularity Lemma. On the other hand, the constant N(ε) in Szemerédi’s

lemma is truly astronomical: a power tower 222 . .
.

of height 1/ε2. It might be difficult not to
tremble at its magnitude, but take heart and recall: Pish-posh. Finite is finite.23

7.3 Random variables

7.3.1 Martingales

A martingale is a safety device used in fencing to prevent a foil from being accidentally thrown
during disarmament. It is fashioned as a tape or leather loop attached to the grip of the foil.

Wait, no, um, a martingale is a type of tack used by equestrians to control the head carriage
of a horse.

Well. This is embarrassing. It seems a martingale is also a concept in probability. To discuss
it, we’ll need to be a bit more formal with probability theory than we have been. (This section
on random variables can be skipped if you’re willing to accept Theorem 7.27 as a blackbox.)

Let (Ω,F ,P) be a probability space. (That is, F is a σ-algebra on Ω and P is a measure on
(Ω,F) with P(Ω) = 1.) A random variable on Ω is a measurable function X : Ω→ R. We call
X a finite random variable if its image is finite.

For any A ∈ F , we write X ∈ A to denote the set X−1(A) = {x ∈ Ω : X(x) ∈ A} and
X = a to denote X ∈ {a}. The expected value of X is E[X] =

∫
Ω
X dP. For measurable sets

A,B ∈ F with P(B) > 0, the conditional probability of A with respect to B is

P(A | B) =
P(A ∩B)

P(B)
.

We think of P(A | B) as the probability of selecting a point in A if we already know that
the point is in B. The conditional expected value of X with respect to B ∈ F is E[X | B] =
(
∫
B
X dP)/P(B). From the definition, both expected value and conditional expected value are

linear in the random variable X.
Suppose that X is a finite random variable with range {x1, . . . , xk}. Then {X−1(xi)}ki=1 is

a partition of Ω, and the expected value formula simplifies to the familiar formula

E[X] =

k∑
i=1

xiP(X = xi).

Conditional expected value similarly reduces to

E[X | B] =

k∑
i=1

xiP(X = xi | B).

Let G = {Gi}ni=1 be a finite partition of Ω into measurable sets. The conditional expectation
of X with respect to G is the random variable obtained by averaging X over each set Gi:

E[X | G] =

n∑
i=1

E[X | Gi]χGi
. (7.1)

23And anyway, we won’t need it. We’ll only use the Weak Regularity Lemma.
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So E[X | G] is a function Ω→ R that is constant on the generating sets Gi of G, and the value
of E[X | G] on Gi is the average value of X over Gi. If Y is a finite random variable with range
{y1, . . . , yn}, then GY = {Y −1(yi)}ni=1 is the partition of Ω generated by Y , and we set

E[X | Y ] = E[X | GY ] =

n∑
i=1

E[X | Y = yi]χY −1(yi).

For the remainder of the section, G and H represent finite partitions of Ω. We say that G
refines H when each element of H is a union of elements of G. The common refinement of G
and H is the partition G ∨ H = {G ∩H : G ∈ G and H ∈ H}, and it is the partitions with the
fewest number of sets that refines both G and H. The common refinement of any finite number
of partitions is defined inductively in the natural way.

Lemma 7.20. If G refines H, then E[E[X | G] | H] = E[X | H]. In particular, E[E[X | G]] =
E[X].

Proof. Set Y = E[X | G]. It suffices to show that E[Y | H] = E[X | H] for every H ∈ H.

Choose some H ∈ H; there are disjoint sets {Gi}ki=1 in G so that H =
⋃k
i=1Gi. Since E[Y |

G] = E[X | G] for each G ∈ G, we have

P(H)E[X | H] =

∫
H

X dP =

k∑
i=1

∫
Gi

X dP =

k∑
i=1

∫
Gi

Y dP =

∫
H

Y dP = P(H)E[Y | H],

which proves the first part of the lemma. Taking H = {Ω} proves the second part.

We say that a random variable Z is constant on G if it is constant on every partition element
of G.

Lemma 7.21. If X and Z are random variables and Z is constant on G, then E[ZX | G] =
ZE[X | G].

Proof. This is an application of linearity: If Z(x) = ai for every x ∈ Gi, then E[ZX | Gi] =
aiE[X | Gi]. Therefore E[ZX | Gi]χGi

= ZE[X | Gi]χGi
; then insert this in (7.1) and factor

out Z.

With the preliminaries done, now we can get down to business.

Definition 7.22. A filtration on a measurable space (Ω,F) is a sequence (Gi) of partitions of
Ω into measurable sets such that Gi+1 refines Gi for every i ∈ N.

And now we can define probability’s martingale.24

Definition 7.23. Let (Ω,F ,P) be a probability space and (Gi) be a filtration on Ω. A sequence
(Xn) of random variables on Ω is a martingale with respect to (Gi) if, for each n ∈ N,

1. Xn is constant on Gn and
2. E[Xn | Gn−1] = Xn−1.

24This definition is somewhat different from the usual definition because we are only considering finite par-
titions. Doing so makes the presentation easier—in the general case, it’s not clear from the definition that the
conditional expectation of a random variable necessarily exists! But with a finite partition, these problems don’t
appear.
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Example 7.24. If (Xn)∞n=0 is a collection of independent identically distributed variables with
expected value 0, then Yn =

∑n
i=0Xi is a martingale (with respect to the common-refinement

filtration.)25

We think of the filtration in a martingale representing the information available about the
point x ∈ Ω at time n; since the information available at time n+ 1 is at least the information
available at time n, we want Gn+1 to refine Gn.

Since Xn is constant on the finite partition Gn, it is a finite variable. One of the most
common choices for Gn is the common refinement of the partitions generated by X1, . . . , Xn, so
that condition (2) reads as E[Xn | Xn−1, . . . , X1] = Xn−1. We can think of a martingale (Xn)
as representing the resources of a player in a fair game: Since the game is fair, we expect the
total resources at each step, given the previous outcomes, will be the same as the resources in
the previous step. Indeed, the following corollary shows that, at least for expected value, the
player never prospers.

Corollary 7.25. If (Xn)∞n=0 is a martingale, then E[Xn] = E[X0] for all n ∈ N.

Proof. Applying Lemma 7.20 gives E[Xn] = E[E[Xn | Gn−1]] = E[Xn−1].

We call a sequence of random variables (Cn)∞n=1 on Ω predictable (with respect to the
filtration (Gn)∞n=0) if Cn is constant on Gn−1 for every n ≥ 1. Practically speaking, this means
that the value of Cn is determined by the information up to time n− 1.

We can play a game on the martingale (Xn) as follows. At time n, the price Xn of a stock is
released. You then decide to bet with or against the stock with weight Cn+1 (which is positive
when betting with, negative when betting against, and 0 if no action is taken), paying Cn+1Xn

dollars. Then the price of the stock at time n+1 is revealed, and you cash out the bet, receiving
Cn+1Xn+1 dollars; so you net Cn+1(Xn+1 −Xn) dollars. We do this until time N . Is there a
strategy that guarantees a profit?

Proposition 7.26. Let (Gn) be a filtration system on (Ω,F ,P). If (Xn) is a martingale and
(Cn) is a predictable sequence, then

Mn =

n∑
i=1

Ci(Xi −Xi−1)

is a martingale.

Proof. Since {Ci}ni=1 and {Xi}ni=0 are all constant on Gn, so is Mn. We use Lemma 7.21 to
verify condition (2):

E[Mn −Mn−1 | Gn−1] = E[Cn(Xn −Xn−1) | Gn−1] = CnE[Xn −Xn−1 | Gn−1] = 0,

so E[Mn | Gn−1] = E[Mn−1 | Gn−1] = Mn−1.

Consequently, no strategy can be guaranteed to produce a profit, since your expected win-
nings are E[MN ] = E[M0] = 0.26

25Here’s an explicit construction of such an instance. The set Ω = [0, 1] with the Lebesgue measure is a
probability space. Let (x)n denote the nth digit in the binary expansion of x. We set Xn(x) := 2(x)n − 1, and
Gn is the partition of [0, 1] into 2n intervals of length 1/2n.

26However, if you have infinite wealth, infinite time, and can choose when to stop playing, you can guarantee
a profit by playing the Martingale strategy.
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7.3.2 Two convergence results

The following theorem the key result we’ll use on martingales.

Theorem 7.27 (Martingale convergence). If (Xn) is a bounded martingale on (Ω,F ,P), then
the sequence (Xn(x))n converges for almost every x ∈ Ω, and the limit function is bounded.

Proof. If (Xn(x))n does not converge, then there are rational numbers a < b such that Xn(x) <
a for infinitely many n and Xn(x) > b for infinitely many n. Let E(a, b) be the set of points
x ∈ Ω that satisfy this property. If E is the set of points for which (Xn(x))n does not converge,
then E =

⋃
a,b∈Q
a<b

E(a, b). To prove that P(E) = 0, it suffices to show that P(E(a, b)) = 0 for

arbitrary rational numbers a < b.
Fix some rational numbers a < b. We consider the gambling game discussed prior to

Proposition 7.26. If x ∈ E(a, b), then it seems we can cook up a good strategy: The first time
Xn < a, buy a stock, keep holding it until Xn > b, at which point sell. There is a guaranteed a
profit of at least b−a dollars each time we pull this stunt, so after selling the stock, you repeat,
buying it the next time Xn < a, selling it once Xn > b, and so on. We codify this strategy in
the predictable sequence (Cn) by setting C1 = δ(X0 < a) and, for each n > 1,

Cn = δ(Cn−1 = 1) δ(Xn−1 ≤ b) + δ(Cn−1 = 0) δ(Xn−1 < a).

We denote by uN (x) the number of times that (Xn(x))n crosses from below a to above b,
called upcrossings, in the interval [0, N ]. More precisely, we set s1 = min{k : Xk(x) < a}, and
inductively define ti = min{k > si : Xk(x) > b} and si+1 = min{k > ti : Xk(x) < a}; then
uN (x) = max{m : tm ≤ N}.

Suppose that |Xn| ≤ K for all n ∈ N. The net profit for our betting strategy at time N is
given by

MN =

N∑
i=1

Ci(Xi −Xi−1).

On the one hand, at time N we have completed uN (x) successful trades; we may have one
unsold stock, which can contribute a loss of at most 2K, if we bought it at value K and its
current value is −K. Thus MN (x) ≥ uN (x)(b − a) − 2K, so E[MN ] ≥ E[uN ](b − a) − 2K.
On the other hand, (MN ) is a martingale by Proposition 7.26, so E[MN ] = 0 for all N ∈ N.
Combining, we have

E[uN ] ≤ 2K

b− a
.

We define u(x) = limN→∞ uN (x), the total number of upcrossings in the sequence (Xn(x))n.
(This limit always exists because (uN (x))N is an increasing sequence for each x ∈ Ω.) We apply
the Lebesgue Monotone Convergence Theorem to u:

E[u] = lim
N→∞

E[uN ] ≤ 2K

b− a
.

Now x ∈ E(a, b) if and only if u(x) =∞. But since the expected value of u is finite, P(u−1(∞))
cannot be strictly positive. Therefore P(E(a, b)) = 0, as desired.

It follows from |Xn(x)| ≤ K that |limn→∞Xn(x)| ≤ K, so the limit function is bounded.

The following is completely unrelated to martingales, but we’ll need it.

Proposition 7.28. Let (Ω,F , µ) be a probability space and (fn) a uniformly bounded sequence
of real functions on Ω. If (fn) converges pointwise almost everywhere to f , then ‖f−fn‖1 → 0.
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Proof. Fix some ε > 0. For each N ∈ N, define AN = {x ∈ Ω : |f(x)− fn(x)| < ε/2 for all n ≥
N}. This is a measurable set. Since fn → f almost everywhere, µ(

⋃∞
N=1AN = 1, and since

AN ⊆ AN+1 for all N ∈ N, we have µ(AN ) → 1. Suppose |fn| < K for all n ∈ N. We can
choose an N ∈ N so that µ(AN ) > 1− ε/4K. For every n ≥ N ,∫

Ω

|f − fn| dµ <
ε

2
µ(AN ) + 2Kµ(Ω \AN ) <

ε

2
+
ε

2
= ε.

This shows that ‖f − fn‖1 < ε for sufficiently large n, which completes the proof.

7.4 Proof of compactness

Standing atop our heap of assorted tools, we can now prove the following theorem.

Theorem 7.29. The metric space (W̃0, δ�) is compact.

Proof. We want to prove that every sequence of graphons has a convergent subsequence, so let
(Wn) be a sequence of graphons. Before we begin the proof, let’s outline the argument with a
diagram.

W1,1 W1,2 W1,3 · · · W1

W2,1 W2,2 W2,3 · · · W2

W3,1 W3,2 W3,3 · · · W3...
...

... ?

U1 U2 U3 → W

Instead of directly taking a subsequence of (Wn), we first approximate each graphon with a
sequence (Wn,k)k of step functions. These are discrete-ish objects, so if we do it carefully, we
can select a subsequence of (Wn,k)k that converges to some graphon Uk. The sequence (Uk)
will converge to some graphon W , and then we show that W is the limit of a subsequence of
(Wn).

With the sketch in mind, we begin by choosing a partition Pn,k for each n, k ∈ N so that
1. ‖Wn − (Wn)Pn,k

‖� < 1/k,
2. |Pn,k| = mk, independent of n, and
3. Pn,k+1 refines Pn,k.

The Weak Regularity Lemma (specifically Theorem 7.10) guarantees the existence of a collection
of partitions with this property (so long as we allow empty sets in the partition).

For each n, k ∈ N, there exists a measure-preserving bijection φk,n : [0, 1]→ [0, 1] that maps
the partition classes of Pn,k to intervals27; let Qn,k denote the resulting partition. We can
choose the maps (inductively) so that Qn,k+1 refines Qn,k (relying on condition (3)). We define

Wn,k = (W
φn,k
n )Qn,k

.
Condition (1) guarantees that

δ�(Wn,Wn,k) ≤ ‖Wφn,k
n −Wn,k‖� = ‖(Wn − (Wn)Pn,k

)φn,k‖� <
1

k

for every n ∈ N, so (Wn,k) converges to (Wn) uniformly.
Now we want to get the Uk. Each Wn,k is a step function on mk intervals, ordered by left

endpoint as V1, . . . , Vmk
. We assign to it the vector αn,k ∈ [0, 1]mk , whose ith entry is the

length of Vi, and the matrix βm,k ∈ [0, 1]mk×mk , whose (i, j)th entry is the value of Wn,k on
Vi × Vj (and 0 if either Vi or Vj is the empty set). Since [0, 1] is compact, so too is the set

27Construct one!
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[0, 1]m
2
k+mk , so for each k ∈ N there is a subsequence of indices (nr) such that (αnr,k, βnr,k)r

converges in each element to some (αk, βk). This vector uniquely describes a graphon, and this
graphon is the pointwise (almost everywhere) limit of (Wnr,k)r.

We want to choose one subsequence that works for all k simultaneously. We do that by
first choosing a subsequence (nr,1) that works for k = 1 and from that choosing a subsequence
(nr,2) that works for k = 2, then a further subsequence (nr,3) that works for k = 3, and so
on, with (nr,k)r a subsequence of (nr,k−1)r such that (Wnr,k,k)r is convergent pointwise in the
cut norm. The trick is to combine the kth terms from (nr,k)r into a new sequence: (Wnr,r,k)r
is also convergent for every k ∈ N, and we call the limit graphon Uk. We denote by Qk the
partition associated to Uk (that is, the limit of the partitions Qnr,r,k as r →∞).

At this point, we’re swimming in subindices. To ease eye strain, let’s pass to the subsequence
(nr,r) and relabel the indices just using r, so that Wnr,r,k becomes Wr,k.

The partition Qn,k+1 is a refinement of Qn,k, so (Wn,k+1)Qn,k = Wn,k by Lemma 7.20.
Taking the limit as n → ∞, we get (Uk+1)Qk

= Uk.28 Now we prepare for magic. The
unit square [0, 1]2 with the Lebesgue measure is a probability space, and (Uk) is a sequence
of bounded random variables on that space (since 0 ≤ Uk ≤ 1). Refinement is preserved in
the limit, so (Qk) is a filtration, and the relationship (Uk+1)Qk

= Uk means that (Uk) is a
martingale. Abracadabra! The sequence (Uk) converges pointwise almost everywhere to a limit
kernel W . (This bit of legerdemain brought to you by Theorem 7.27.)

All that remains is a standard analysis argument. To make it less standard, let > 0. By
Proposition 7.28, there is a ¨ > 3/ so that ‖W − U¨‖1 < /3, and there is a corresponding
	 ∈ N so that ‖Wn,¨ − U¨‖1 < /3 for all n > 	. Thus, for all n > 	,

δ�(Wn,W ) ≤ δ�(Wn,Wn,¨) + δ�(Wn,¨, U¨) + δ�(U¨,W )

≤ δ�(Wn,Wn,¨) + ‖Wn,¨ − U¨‖1 + ‖U¨ −W‖1 < .

Therefore Wn →W .

This proof works equally well for any closed subset of kernels with uniformly bounded range.
For example, (W̃1, δ�) is compact.

There are two immediate corollaries.

Corollary 7.30. If a graph sequence (Gn) is convergent in the homomorphism density sense,
then there is a graphon W so that t(F,Gn)→ t(F,W ) for every finite graph F .

Proof. Let Wn = WGn and take a convergent subsequence of Wnk
→ W with respect to δ�.

Then t(F,Gnk
) → t(F,W ) for every finite graph F by the Counting Lemma. Since (t(F,Gn))

converges, it also tends to t(F,W ).

Corollary 7.31. For every ε > 0, there exists a natural number k(ε) such that for any graphon
W , there is a k(ε)-vertex graph G so that δ�(G,W ) < ε.

Proof. Let Bε(W ) = {U ∈ W : δ�(U,W ) < ε}. The collection {Bε(G)}G∈F is an open cover of
W0, so there is a finite collection of graphs {Gi}ni=1 such that {Bε(Gi)}ni=1 coversW0. Let k(ε)
be the least common multiple of v(G1), . . . , v(Gn). For each Gi there is a blowup G′i with k(ε)
vertices. Since δ�(Gi, G

′
i) = 0, the set {Bε(G′i)}ni=1 covers W0, which proves the claim.

28This can be verified by first using the triangle inequality:

‖(Wn,k+1)Qn,k
− (Uk+1)Qk

‖1 ≤ ‖(Wn,k+1)Qn,k
− (Wn,k+1)Qk

‖1 + ‖(Wn,k+1)Qk
− (Uk+1)Qk

‖1.

The second term on the right-hand side is as most ‖Wn,k+1 − Uk+1‖1 by Exercise 7.6, and which goes to 0 by
Proposition 7.28. With a little work, the left-hand side also goes to zero.
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8 Sampling

Up to this point, sampling has been implicit through the homomorphism densities. In this
section, we discuss some of the more explicit connections between sampling and the limit
theory.

The proofs are in general tedious and quite involved, so they don’t appear here.29 Instead,
we’ll give the broad strokes, statements of the main theorems, some consequences, and a few
examples.

8.1 The Sampling Lemmas

For a subset S ⊆ V (G), we let G[S] denote the subgraph of G induced by S. The first theorem
says that the labelled cut distance of two large graphs can be estimated via their samples.

Theorem 8.1 (First Sampling Lemma for Graphs). Let G and H be two graphs on the same
vertex set. Let k ≤ v(G) and S be a subset of V (G) chosen uniformly at random from all

subsets of size k. With probability at least 1− 4e−
√
k/10,

|d�(G[S], H[S])− d�(G,H)| ≤ 8

k1/4
.

To put it another way, suppose we want to estimate the d� distance between two large
graphs G and H with an error of at most ε. The First Sampling Lemma says that we can do
this by picking two random samples on k ≥ 4096/ε4 vertices, and that this strategy almost

never fails (in this case at least it fails with probability at most 4e−6.4/ε2 , although this gets
better with larger k).

There is a similar result for graphons. If U is a kernel and S = (s1, . . . , sk) is an ordered
k-tuple of points in [0, 1], we let U [X] denote the k × k matrix with (U [S])i,j = U(si, sj).

Theorem 8.2 (First Sampling Lemma for Kernels). Let U ∈ W1 and S ∈ [0, 1]k be chosen

uniformly at random. With probability at least 1− 4−
√
k/10,

−3

k
≤ ‖U [S]‖� − ‖U‖� ≤

8

k1/4
.

The interesting part about this result is that the upper and lower bounds are not the same!
It might be tempting to say that the lemma for graphs follows from the lemma for kernels by
setting U = WG −WH , but this isn’t true: The distribution of WG[S] is the same as sampling
from G allowing repeated vertices, while G[S] does not.

The Second Sampling Lemmas address the distance of a sample from the original graph or
kernel.

Theorem 8.3 (Second Sampling Lemma for Graphs). Let k ≥ 1 and G be a simple graph with
at least k vertices. If S is chosen uniformly at random from the subsets of V (G) of size k, then
with probability at least 1− exp(−k/(2 log2 k)),

δ�(G[S], G) ≤ 20√
log2 k

.

29If you simply must see them, the details are in [2]. The Sampling Lemmas are discussed in Sections 10.1–10.4
and the proof of Theorem 8.6 appears in Section 11.4.
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To state the corresponding theorem for kernels, we need to change how we sample from
kernels. Let W be a kernel and fix some S ∈ [0, 1]k. The edge-weighted graph H(S,W ) has
vertex set [k] and weight βi,j = W (si, sj) for each i, j ∈ [k] with i 6= j and βi,i = 0 (so
H(S,W ) has no loops). The random weighted graph H(k,W ) obtained from W is defined
by the distribution of H(S,W ) where S ∈ [0, 1]k is chosen uniformly at random. So, to get
H(k,W ), we choose k random points in [0, 1] and then weight the edges with the values given
by W .

We can form a simple graph from each edge-weighted graphH as follows. The random simple
graph G(H) has vertex set V (H), and each edge ij appears independently with probability βi,j
(for every i 6= j; we exclude loops). For each S ∈ [0, 1]k, we set G(S,W ) = G(H(S,W ), and
for each k ≥ 1 we define G(k,W ) = G(H(k,W )). That is, to sample a simple graph from W ,
we form a “template” edge-weighted graph by sampling H(k,W ), and then sample that graph.
If W = p, then G(n,W ) is the Erdős-Rényi random graph. If you wish, you can show that
d�(G(H), H) < ε with high probability for every edge-weighted graph H with weights in [0, 1];
this is an application of Hoeffding’s inequality.

Theorem 8.4 (Second Sampling Lemma for Graphons). Let k ≥ 1 and W ∈ W0. With
probability at least 1− exp(−k/(2 log2 k)),

δ�(H(k,W ),W ) ≤ 20√
log2 k

and δ�(G(k,W ),W ) ≤ 22√
log2 k

.

The Second Sampling Lemma provides another proof that simple graphs are dense in the
space of graphons.

Proposition 8.5. If W is a graphon, then G(n,W )→W with probability 1.

Proof. From Theorem 8.4, we know that δ�(G(n,W ),W ) > 22/
√

log2 n with probability at

most exp(−n/(2 log2 n)) < e−
√
n. The series

∑∞
n=1 e

−
√
n is convergent (for example, by the inte-

gral test). By Borel-Cantelli (Theorem 3.9), the sequence (G(n,W )) satisfies δ�(G(n,W ),W ) ≤
22/
√

log2 n for all but finitely many n with probability 1, so it converges almost surely.

We conclude with a new technique for showing that a sequence of graphons converges. We
call a sequence (Sn) of finite subsets of [0, 1] well-distributed if |Sn ∩ I|/|Sn| → m(I) for every
interval I ⊆ [0, 1]. Equivalently, (Sn) is well-distributed if the uniform measure on Sn weakly
converges to the uniform (i.e. Lebesgue) measure on [0, 1]. (See Definition 5.1.)

Theorem 8.6. If W ∈ W0 is continuous almost everywhere and (Sn) is a well-distributed set,
then G(Sn,W ) converges to W with probability 1.

The proof is mainly a (not terribly interesting) measure theory argument, so we omit it.

8.2 Examples of convergent randomly-generated graph sequences

We have seen, in detail with Erdős-Rényi random graphs and at a high level with graphon
sampling, that a randomized procedure can result in an almost certainly convergent graph
sequence. In this section, we present a few more examples of this.

Example 8.7 (Cloning 1). LetG0 be a finite simple graph. We build a sequence (Gn) randomly,
beginning withG0, by choosing a vertex v fromG0 uniformly at random at each step and cloning
it. For example, if G0 = K3, the sequence may look like this:
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G0 G1 G2 G3 G4

This very similar to taking a sample of n points from WG0
. There are two differences: First, we

start with G0, not the empty graph. Second, the graphs are constructed inductively, so they
aren’t independent. So while we can’t simply appeal to the Second Sampling Lemma to say
that this converges, it nevertheless converges to WG0

with probability 1. (This can be show
using Theorem 8.6 and the Strong Law of Large Numbers, for example.)

Example 8.8 (Cloning 2). Suppose we modify the construction in the previous example: To
form Gn, instead of choosing a vertex from G0 to clone, we choose a vertex uniformly from
Gn−1. It happens that this graph sequence also converges with probability 1, but its limit is
not determined—if you run this sequence multiple times, then it will converge each time, but
always to a different limit! (See Example 11.43 of [2] for slightly more detail.)

Example 8.9 (Uniform attachment). We grow another graph sequence, this time starting with
a single vertex. Let G1 be an isolated vertex labelled 0. At time n, we introduce a new isolated
vertex n to Gn−1 and independently connect every pair of nonadjacent vertices with probability
1/n. These graphs are called uniform-attachment graphs.

What’s the probability that two vertices are connected in Gn? if 0 ≤ i < j ≤ n − 1,
then i and j are not adjacent in step n if and only if they weren’t connected in any of the
steps j, j + 1, . . . , n. this occurs with probability j

j+1
j+1
j+2 · · ·

n−1
n = j

n . This is independent for
each pair ij by assumption. Thinking in terms of a graphon, the probability that i and j are
connected is 1−max{i/n, j/n}.

Set S = {0, 1/n, . . . , (n − 1)/n}. Since the edges are independent, this means that Gn has
the same distribution as G(Sn,W ), where W (x, y) = 1 − max{x, y}. Since W is continuous
almost everywhere and Sn is well-distributed, Theorem 8.6 implies that the graph sequence
(Gn) converges with probability 1.

Further examples appear in Section 11.4 of [2].

Exercise 8.10. Let (Gn) be a sequence of uniform attachment graphs. What is the expected
average degree of Gn? What is the expected number of edges?
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9 Homomorphism inequalities

9.1 Apéritif

How many edges can we stuff into a graph without creating a triangle? With this question
began the field of extremal graph theory, often30 referred to as Xtreme Graph Theory. In
general, questions in extremal graph theory ask how certain graph quantities are related (via
inequality) and which graphs maximize or minimize this relationship. It’s the search for graphs
that live on the edge.

But wait, you say: Extremal graph theory is Section 10, and this is only Section 9. Good eye.
In this section, we’ll only look at the first part of this question: How are different homomorphism
densities related? For example, the edge-stuffing question can be rephrased to ask: If t(K3, G) =
0, how large can t(K2, G) be? Mantel first answered this question in 1907.

Theorem 9.1 (Mantel). If G contains no triangle, then e(G) ≤ v(G)2/4.

Proof. Suppose G has no triangle. Choose any two adjacent vertices x and y. Any other vertex
z is adjacent to at most one of x and y, so deg(x) + deg(y) ≤ v(G). Therefore∑

xy∈E(G)

(deg(x) + deg(y)) ≤ e(G)v(G).

Imagine placing, for each x ∈ V (G), the degree of x at each of its incidences. Adding up
the two labels on each edge and then summing over edges gives the left-hand sum above. On
the other hand, adding up the labels at each vertex and then summing over vertices gives∑
x∈V (G) deg(x)2. From Cauchy-Schwarz,

(2e(G))2 =

( ∑
x∈V (G)

deg(x)

)2

≤
( ∑
x∈V (G)

12

)( ∑
x∈V (G)

deg(x)2

)
≤ e(G)v(G)2.

Dividing both sides by 4e(G) finishes the proof.

This is sharp: Kn,n is the extremal graph. The interpretation above was in “building up”:
how many edges can we put into the empty graph while keeping it triangle free? We can turn
this on its head and ask: What is the minimum number of edges we must remove from Kn to
eliminate all triangles? Mantel’s Theorem says, basically, half of them. It turns out that this
is not peculiar to the complete graphs.

Exercise 9.2. Show that it is always possible to remove at most e(G)/2 edges from a graph
G to form a bipartite graph.

What of the other direction? How does the number of edges limit the number of triangles?

Theorem 9.3 (Kruskal–Katona). For every graph G,

t(K3, G) ≤ t(K2, G)3/2.

Although there is no graph where equality holds, the inequality is asymptotically tight.

Exercise 9.4. Let Gn be the graph KnKn, that is, the union of a clique of size n with n
isolated vertices. Show that limn t(K3, Gn) = limn t(K2, G)3/2.

30Actually never.
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We give two proofs of Theorem 9.3. The first has a spectral flavor. It relies on the following
observation.

Lemma 9.5. If a1, . . . , an ≥ 0 and t ≥ 1, then
∑
ati ≤ (

∑
ai)

t.

Proof. If
∑
ai = 0 then all ai are 0 and the result is trivial. Otherwise scale the coefficients by

setting bi = ai(
∑
ai)
−t. The inequality is true with b1, . . . , bn if and only if it is for a1, . . . , an,

and the nice part is that bi ∈ [0, 1] and
∑
bi = 1. So the right-hand side of the inequality is 1,

and
∑
bti ≤

∑
bi ≤ 1.

Proof 1. Let G be a simple graph on n vertices and A be its adjacency matrix. Since A
is real and symmetric, it has a full spectrum by the Spectral Theorem. Let 1, . . . , n be
the eigenvalues of A.31 The quantities n2t(K2, G) and n3t(K3, G) (that is, hom(K2, G) and
hom(K3, G)) are the number of closed walks of length 2 and 3, respectively, in G. Thus

n2t(K2, G) =

n∑
i=1

(A2)i,i = tr(A) =

n∑
i=1

2
i .

Similarly n3t(K3, G) =
∑n
i=1

3
i . Using the lemma with ai = 2

i and t = 3/2 gives

n3t(K3, G) =

n∑
i=1

3
i ≤

(
n∑
i=1

2
i

)3/2

= (n2t(K2, G))3/2.

Then divide by n3.

With not even a pause for a breath, let’s start proof two. This one is a tricky application
of Cauchy-Schwarz.

Proof 2. The usual: G is a graph with n vertices and A is its adjacency matrix. For clarity, we
denote the (i, j) entry of A by a(i, j). As mentioned before, n3t(K3, G) is the number of closed
walks of length 3 in G, so

(n3t(K3, G))2 =

( ∑
x,y,z∈V (G)

a(x, y)a(y, z)a(z, x)

)2

=

( ∑
y,z∈V (G)

a(y, z)
( ∑
x∈V (G)

a(x, y)a(z, x)
))2

.

Applying Cauchy-Schwarz to the last expression provides an upper bound of( ∑
y,z∈V (G)

a(y, z)2

)( ∑
y,z∈V (G)

( ∑
x∈V (G)

a(x, y)a(z, x)
)2
)
.

The left term is n2t(K2, G). Expanding the square in the right term yields the expression∑
y,z∈V (G)

( ∑
x∈V (G)

a(x, y)a(z, x)
)( ∑

w∈V (G)

a(w, y)a(z, w)
)

=
∑

x,y,w,z

a(x, y)a(y, w)a(w, z)a(z, x),

which can be recognized as n4t(C4, G). We finish by applying Lemma 4.1 with K2K2 ⊆ C4

(recall that t(K2, G)2 = t(K2K2, G)):

t(K3, G)2 ≤ t(C4, G)t(K2, G) ≤ t(K2, G)3.

Perchance you judge this a collection of ad hoc skullduggery. You would be right—except
that some of this can be distilled into extremely effective voodoo that gives very short magical
proofs of statements about these and similar inequalities. This journey into the occult, unlike
a typical supernatural foray, will be well-grounded, with plenty rigor. Let’s begin.

31Spectral . . . get it?
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9.2 Quantum graphs and gluing

The type of relationships that we will focus on are algebraic inequalities between homomorphism
densities that are valid for all graphs, like Mantel’s Theorem and the Kruskal–Katona Theorem.
Because homomorphism numbers are nice, it turns out that all algebraic inequalities reduce to
linear ones, since products of homomorphism densities collapse into one homomorphism density
via Lemma 4.2. For brevity, we denote the disjoint union of F1 and F2 by F1F2 and the disjoint
union of k copies of F by F k.

Definition 9.6. A quantum graph is a finite linear combination of finite multigraphs (over R).
The multigraphs in a quantum graph with nonzero coefficients are called its constituents.32

Wait, hold up. Multigraphs? We haven’t talked about multigraphs at all. Nonetheless,
they will be relevant here, so let’s briefly discuss extensions from simple graphs to multigraphs.

Let F and G be multigraphs (so multiple edges can appear between a given pair of vertices).
A homomorphism from F to G is a pair of maps φ : V (F )→ V (G) and ψ : E(F )→ E(G) such
that if e connects x, y ∈ V (F ), then ψ(e) connects φ(x) and φ(y) in G. If F and G are simple
graphs, this reduces to a regular homomorphism. We denote by hom(F,G) the number of
homomorphisms from F to G and define the homomorphism density of F in G by

t(F,G) =
hom(F,G)

v(G)v(F )
.

The interpretation of this quantity is a bit more subtle than before: It is the average number
of homomorphisms from F to G that use a fixed vertex map.

Homomorphism density into kernels is not really different: t(F,W ) =
∫ ∏

ij∈E(F )W (xi, xj);

we just think of E(F ) as a multiset of edges. Suppose G is a multigraph on n nodes, and let
P = {V1, . . . , Vn} be the partition of [0, 1] into n intervals of equal length. We define WG as the
step function where, if x ∈ Vi and y ∈ Vj , then W (x, y) is the number of edges between i and j
in G. With this definition, t(F,G) = t(F,WG) for all multigraphs G. (Alternatively, if A is the
adjacency matrix of G, where ai,j is the number of edges between i and j, then WG := WA, as
in Definition 5.16.)

Example 9.7. If F = , then t(F,W ) =
∫
W 2 dxdy.

The multigraph content is mostly preparation for the (near) future, but quantum graphs
are not. The set of quantum graphs is the real vector space with the set of finite multigraphs
as a basis.

Definition 9.8. We extend the homomorphism density operator linearly to the set of all
quantum graphs. That is, if =

∑n
i=1 aiFi is a quantum graph, we define t( ,W ) =∑n

i=1 ait(Fi,W ). We write ≥ 0 if t( ,W ) ≥ 0 for every graphon W , and we call such
a quantum graph nonnegative. Naturally, we write 1 ≥ 2 if 1 − 2 ≥ 0.33

Since algebraic statements about homomorphisms can be reduced to linear ones, every
algebraic inequality can be expressed as ≥ 0 for some quantum graph . The type of result
we’re interested in here can be concisely summed up as:

Problem. Find nonnegative quantum graphs.

Since graphs are dense in the space of graphons, ≥ 0 if and only if t( , G) ≥ 0 for every
finite simple graph G. Thus, from the Kruskal–Katona Theorem, we know that K3

2 −K2
3 ≥ 0.

32This definition has absolutely nothing to do with the other definition of quantum graph, which involves
labelling each edge with a differential equation.

33Atom icon by Fengquan Li from the Noun Project.
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9. homomorphism inequalities

Exercise 9.9. Convince yourself: Show that t( ,W ) ≥ 0 for every graphon W if and only if
t( , G) ≥ 0 for every graph G.

Now we have to introduce something weird—a product on graphs (not just the disjoint
union). The best motivation is that it drastically reduces the difficulty of many homomorphism
density inequalities, but unfortunately this is only possible to show after it’s introduced. You
can gain some perspective, perhaps, by glancing ahead at the shortened proof of Kruskal–
Katona (Theorem 9.29), as well as Proposition 9.30 and Proposition 9.31.

Back? Good.

Definition 9.10. A k-labelled graph is a multigraph where each of the elements of {1, 2, . . . , k}
is assigned to a distinct vertex. A partially labelled graph is a k-labelled graph for some k ∈ N.

In other words, a k-labelled graph G is an injective function [k]→ G.

Definition 9.11. Let F1 and F2 be two k-labelled graphs. The gluing product of F1 and F2 is
the graph obtained by identifying vertices with the same labels in the disjoint union of F1 and
F2.

Here are two examples of gluing products.
1

2

1

2

=

1

2

1

2

1

2

=

1

2

Exercise 9.12. The gluing product is associative and commutative. Among the set of k-
labelled graphs, what is the identity element?

A partially labelled quantum graph is a linear combination of partially labelled graphs. We
extend the gluing product linearly the entire space of partially labelled quantum graphs.

Definition 9.13. The unlabelling operator J · K removes the labels from a partially labelled
graph.

9.3 Graph parameters and connection matrices

Definition 9.14. A graph parameter is a real function on the isomorphism classes of multi-
graphs; a simple graph parameter is a real function on the isomorphism classes of simple graphs.

For example, number of vertices, chromatic number, independence number, and girth are all
graph parameters. If we fix a graph G and a kernel W , then hom( · , G) and t( · ,W ) are graph
parameters as well. Any graph parameter can be extended linearly to all quantum graphs, as
we did in the last section for homomorphism density. Every graph parameter has a simple
counterpart, by reducing any multigraph to the underlying simple graph34 before applying the
parameter. In the other direction, we can extend any simple graph parameter to all multigraphs
by defining the value of a multigraph to be the value of the underlying simple graph. For brevity,
we define some notation: Let F be a multigraph and F ∗ be the underlying simple graph of F .
We denote by t∗ the induced simple graph parameter of t, that is, t∗(F,W ) = t(F ∗,W ).

Definition 9.15. The connection matrix of a graph parameter f is the countably infinite
matrix indexed by partially labelled graphs whose (Fi, Fj) entry is f(JFiFjK).

34The underlying simple graph is what you get by replacing multiple edges between a pair of vertices by a
single edge.
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9. homomorphism inequalities

So we glue two graphs together, turn it back into your standard, everyday multigraph, and
then apply the graph parameter. There’s a lot that can go on with connection matrices; we’ll
restrict ourselves to the cases where f is homomorphism density or the corresponding induced
simple graph parameter.35

How does the gluing algebra interact with homomorphism densities?

Definition 9.16. Suppose that F is a k-labelled graph. We suppose that V (F ) = [n] and that
the labels of F correspond to the vertices 1, 2, . . . , k. For x ∈ Rk and any kernel W , we define

tx(F,W ) =

∫
[0,1][n]\[k]

∏
ij∈E(F )

W (xi, xj) dxk+1 · · · dxn.

In other words, we integrate the homomorphism density integrand with respect to all the
unlabelled vertices of F , and tx(F,W ) is a function of k variables (each corresponding to a
labelled vertex of F ). If F1 and F2 are k- and r-labelled graphs, respectively, with k < r, let F̃1

denote the disjoint union of F1 with r−k isolated nodes labelled k+1, . . . , r. Then F1F2 = F̃1F2

and tx(F1,W ) = tx(F̃1,W ), so we may always assume in a product of two partially labelled
graphs that the label sets are the same.

Integrating with respect to the remaining variables is what glues two graphs together.

Exercise 9.17. Let F1 and F2 be two k-labelled graphs. Show that for every kernel W ,

t(JF1F2K,W ) =

∫
[0,1]k

tx(F1,W )tx(F2,W ) dx. (9.1)

The main theoretical result can be phrased as follows.

Theorem 9.18. Any finite submatrix of the connection matrix for t( · ,W ) is positive semidef-
inite for every W ∈ W, and the same holds for t∗( · ,W ) for every W ∈ W0.

This might seem like gobbledygook, and not very useful gobbledygook at that. Nonetheless,
it is important—it’s the heart of the voodoo we’re trying to create. To make the most of it,
we’ll need to review positive semidefinite matrices.

9.4 Positive semidefinite matrices

Definition 9.19. A symmetric n×n real matrix A is called positive definite if v>Av is strictly
positive for every nonzero vector v ∈ Rn. The matrix A is called positive semidefinite if v>Av
is nonnegative for every v ∈ Rn.

By the Spectral Theorem, every positive semidefinite matrix has an orthonormal basis of
eigenvectors 1, . . . , n and corresponding real eigenvalues 1, . . . , n.

Lemma 9.20. Every eigenvalue of a positive semidefinite matrix is nonnegative.

Proof. By assumption, 0 ≤ >
i A i = i(

>
i i). Since

>
i i > 0, the eigenvalue

must be nonnegative.

The converse of Lemma 9.20 holds, as well.

35For more on connection matrices, see Chapter 4 of [2] or Lovász’s notes at http://web.cs.elte.hu/~lovasz/
welsh.pdf.
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9. homomorphism inequalities

Corollary 9.21. The determinant of any positive semidefinite matrix is nonnegative.

Proof. The determinant is the product of the eigenvalues.

Since all the eigenvalues are nonnegative, we’ll orient them to face the right half of the real
line: 1, . . . , n.

There’s actually only one other result that we need. The proof is longer than the previous
one, but it’s not too bad.

Definition 9.22. Let A and B be two matrices with the same dimensions. Their Schur product,
denoted A ◦B, is a matrix of the same dimensions obtained via entrywise multiplication, that
is, (A ◦B)i,j = ai,jbi,j .

Theorem 9.23 (Schur product theorem). If A and B are positive semidefinite, then A ◦B is.

The proof uses the following facts.

Exercise 9.24. Suppose A is a positive semidefinite matrix with orthonormal eigenbasis

1, . . . , n and corresponding eigenvalues 1, . . . , n. Prove that

1. A =
∑n
i=1 i i

>
i . (It might help to show that two n × n matrices A and B are

equal if and only if Av = Bv for every vector v ∈ Rn.)
2. (uu>) ◦ (vv>) = (u ◦ v)(u ◦ v)> for every pair of vectors u, v ∈ Rn.
3. vv> is positive semidefinite for every v ∈ Rn.
4. the linear combination of positive semidefinite matrices with nonnegative coefficients is

itself positive semidefinite.

Proof of Schur product theorem. Suppose A has orthonormal eigenbasis 1, . . . , n with
corresponding eigenvalues 1, . . . , n and B has orthonormal eigenbasis 1, . . . , n with cor-
responding eigenvalues 1, . . . , n. From the exercise,

A ◦B =

n∑
i,j=1

i j( i
>
i ) ◦ ( j

>
j ).

Also from the exercises, ( i
>
i ) ◦ ( j

>
j ) is a positive semidefinite matrix. The matrix

A ◦ B is a nonnegative linear combination of positive semidefinite matrices and is therefore
positive semidefinite.

9.5 Connection matrices are positive semidefinite

Let’s do what the title says.

Proof of Theorem 9.18. We first prove it for t( · ,W ) with W ∈ W. We want to show that for
any finite collection of k-labelled multigraphs F1, . . . , Fn and real numbers a1, . . . , an,

n∑
i,j=1

aiajt(JFiFjK,W ) ≥ 0. (9.2)

This is not so hard: Writing t(JFiFjK,W ) as an integral as in (9.1) and taking the sum inside
gives ∫

[0,1]k

n∑
i,j=1

aiajtx(Fi,W )tx(Fj ,W ) dx =

∫
[0,1]k

(
n∑
i=1

aitx(Fi,W )

)2

dx ≥ 0.
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9. homomorphism inequalities

So much for the first part. Now suppose that F1, . . . , Fn are k-labelled simple graphs; we want
to show (9.2) for t∗. For any k-labelled graph F , let F ` denote the graph on [k] induced by
the labelled vertices of F , and let F r denote the graph obtained from F by deleting the edges
spanned by labelled vertices. Then

(F1F2)∗ = F r1F
r
2 (F `1 ∪ F `2 ),

where the disjoint union is a graph on [k] edge set E(F `1 ) ∪ E(F `2 ). Each of these is a simple
graph, so by Lemma 4.2,

t∗(JFiFjK,W ) = tx(F r1 ,W )tx(F r2 ,W )tx(F `1 ∪ F `2 ,W ).

Thus

n∑
i,j=1

aiajt
∗(JFiFjK,W ) =

∫
[0,1]k

n∑
i,j=1

aiajtx(F ri ,W )tx(F rj ,W )tx(F `i ∪ F `j ,W ) dx. (9.3)

The argument from Exercise 4.13 shows that

tx(F `i ∪ F `j ,W ) =
∑

H⊇F `
i ∪F

`
j

V (H)=[k]

tind,x(H,W ),

for every x ∈ Rk, where tind,x is defined analogously to tx. Inserting this into (9.3) and
exchanging the order of summation gives∫

[0,1]k

∑
V (H)=[k]

∑
F `

i ∪F `
j⊆H

aiajtx(F ri ,W )tx(F rj ,W )tind,x(H,W ) dx

=

∫
[0,1]k

∑
V (H)=[k]

 ∑
F `

i ⊆H

aitx(F ri ,W )

2

tind,x(H,W ) dx. (9.4)

Since 0 ≤W ≤ 1, the induced homomorphism tind,x(H,W ) is nonnegative for every x ∈ Rk, so
the integral is as well. This finishes the proof.

Great! Now let’s reap the rewards.36

Corollary 9.25. If g is a partially labelled quantum graph, then Jg2K ≥ 0.

Proof. Let g =
∑n
i=1 aiFi. Since homomorphism density and unlabelling are linear,

t(Jg2K,W ) = t

u

v
n∑

i,j=1

aiajFiFj

}

~ ,W

 =

n∑
i,j=1

aiajt(JFiFjK,W ) ≥ 0.

Corollary 9.26. Let F1, . . . , Fn be k-labelled graphs and W be a kernel. If A is the n×n matrix
with ai,j = t(JFiFjK,W ), then det(A) ≥ 0. The same statement holds if ai,j = t∗(JFiFjK,W ).

Proof. This follows from Theorem 9.18 and Corollary 9.21.

36I suppose when you sow gluing algebra and fertilize with positive semidefinite matrices, you reap homomor-
phism density inequalities.
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We can interpret the two parallel results, one with t and one with t∗, as two distinct gluing
algebras. The first is what we described above. In the second, we glue the graphs together and
then remove multiple edges. Both of these products result in a positive semidefinite connection
matrix, so both obey the rules we describe here. For the rest of the notes, we’ll only use the
“simple” gluing product, but when you venture out to glue in the wild, you should remember
both approaches.

Practically speaking, Corollary 9.26 says that if we expand the determinant of a special type
of matrix, we get a posititve quantum graph. For example, for any k-labelled graphs F1, F2,
and F3, we have ∣∣∣∣∣∣

JF1F1K JF1F2K JF1F3K
JF2F1K JF2F2K JF2F3K
JF3F1K JF3F2K JF3F3K

∣∣∣∣∣∣ ≥ 0,

or in other terms,

JF1F1KJF2F2KJF3F3K + JF1F2KJF2F3KJF3F1K + JF1F3KJF2F1KJF3F2K
≥ JF1F1KJF2F3KJF3F2K + JF1F2KJF2F1KJF3F3K + JF1F3KJF2F2KJF3F1K.

Corollary 9.27. If F1 and F2 are two k-labelled graphs, then JF1F2K2 ≤ JF 2
1 KJF 2

2 K.

Proof. Take Corollary 9.26 with k = 2 and expand the determinant.

If this looks like Cauchy-Schwarz, that’s because it is! It can also be proven directly:

t(JF1F2K,W )2 =

(∫
[0,1]k

tx(F1,W )tx(F2,W ) dx

)2

≤
∫

[0,1]k
tx(F1,W )2 dx

∫
[0,1]k

tx(F2,W )2 dx

= t(JF 2
1 K,W ) t(JF 2

2 K,W ).

Corollary 9.28. If A is a positive semidefinite matrix and F1, . . . , Fn are k-labelled graphs,
then

n∑
i,j=1

ai,jJFiFjK ≥ 0.

Proof. Apply Theorem 9.23 to Theorem 9.18.

9.6 Voodoo

To make the pictures less cluttered, we adopt the convention that black nodes represent la-
belled vertices, and the labels are 1, 2, . . . starting from the lower left corner and progressing
counterclockwise. With that convention, here’s a quick proof of Kruskal–Katona.37

Theorem 9.29 (Kruskal–Katona). K3 ≤ K3/2
2 .

Proof. 2
=

s {2

≤
s

2
{ s

2
{

= ≤

Here are two more speedy proofs.

37Except this is a trick: It’s the same proof as before. Why?
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Proposition 9.30. P3 ≥ K2
2 .

Proof.
0 ≤

t(
−

)2|
=

s
− 2 +

{
= −

Proposition 9.31. C2
6 ≤ C4C8.

Proof.
C2

6 =

s {2

≤
s

2
{ s

2
{

= C4C8

Exercise 9.32. Prove Proposition 9.30 using Cauchy-Schwarz (instead of the fact that squares
are nonnegative).

Exercise 9.33. Generalize these results. What can you say about Pn and Cn for general n?
Then use these techniques to find other relations.

Mantel’s Theorem also follows from Goodman’s inequality. Here’s a brief but tricksy proof.

Theorem 9.34 (Goodman’s inequality). K3 ≥ K2(2K2 − 1).

Proof. It is straightforward to check that(
− − +

)2

= − − +

After unlabelling, we apply Corollary 9.25 and Proposition 9.30 to get

0 ≤ − 2 + ≤ − 2 +

Rearranging finishes the proof.

Problem 9.35. The squared expression in the previous proof is called idempotent, which means
that it is equal to its square. Can you find other idempotent expressions? Can you derive other
interesting indequalities from them?

Exercise 9.36. The n-wheel Wn is the graph obtained by adding a vertex to the n-cycle and
connecting it to every other vertex. Find an upper bound for t(Wn,W ) in terms of other
homomorphism densities.

Exercise 9.37. Let K ′n denote the complete graph with one edge deleted. Prove that

t(K ′n+1,W ) ≥ t(Kn,W )2

t(Kn−1,W )

for every W ∈ W0.

Here’s one more handy trick we can use. Recall that a convex function is a map φ : [a, b]→ R
such that φ(αx + βy) ≤ αφ(x) + βφ(y) for every α, β ≥ 0 with α + β = 1 and x, y ∈ R. For
example, φ(x) = x2 and φ(x) = |x| are convex functions on [−1, 1], whereas φ(x) = x3 is not.
(Though it is convex on [0, 1].)

Theorem 9.38 (Jensen’s Inequality). Let (Ω, µ) be a probability space and φ a convex function.
For any integrable function f : Ω→ R,

φ

(∫
Ω

f dµ

)
≤
∫

Ω

φ(f) dµ.
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9. homomorphism inequalities

Proof. Set x0 =
∫

Ω
f dµ. Since φ is convex, there exists a constant m so that φ(x) ≥ m(x −

x0) + φ(x0) for all x ∈ [a, b]. (A proof is outlined in Section A.4, but it should be at least
believable after drawing a picture.) Then

φ

(∫
Ω

f dµ

)
= m

(∫
Ω

f dµ− x0

)
+ φ(x0) =

∫
Ω

(m(f − x0) + φ(x0)) dµ ≤
∫

Ω

φ(f) dµ.

Corollary 9.39. If F is a k-labelled graph and p ∈ N, then

JF pK ≥ JF Kp.

Proof. Apply Jensen’s inequality:

t(JF pK,W ) =

∫
[0,1]k

tx(F,W )p dx ≥

 ∫
[0,1]k

tx(F,W ) dx


p

= t(JF K,W )p.

With this, we can prove a non-trivial inequality very easily. Recall that Ka,b denotes the
complete bipartite graph whose bipartitions have size a and b.

Theorem 9.40. Ka,b ≥ Kab
2 .

Proof. Let Sn denote the star on n + 1 vertices, the graph with one vertex of degree n and n
vertices of degree 1, and let S•n denote the n-labelled version of Sn where each degree-1 vertex
has a label. Then

Ka,b = J(S•a)bK ≥ (Sa)b = J(S•1 )aKb ≥ Ka,b
2 ,

since S1 = K2.

Since P3 = K1,2, this gives an alternate proof of Proposition 9.30. Also, C4 = K2,2, so this
shows that C4 ≥ K4

2 , and Sn ≥ Kn
2 .

Exercise 9.41. Find a function f so that Pn ≥ Kf(n)
2 for every n ≥ 1.

There is a general conjecture underlying these results.

Conjecture 9.42 (Sidorenko). If F is bipartite, then F ≥ Ke(F )
2 .

Theorem 9.40 proves Sidorenko’s conjecture for complete bipartite graphs. It has also been
confirmed for all trees and even cycles, as well as a few other cases, but the general statement is
still open. The smallest unconfirmed case has 10 vertices. (Also, the inequality in Sidorenko’s
conjecture does not hold for non-bipartite graphs, since t(F,K2) = 0 if F is not bipartite, but
t(K2,K2)e(F ) = ( 1

2 )e(F ).)

Exercise 9.43. The case of even cycles can be handled using spectral analysis. Let G be a
graph and A its adjacency matrix. Let 1 ≥ · · · ≥ n be the (real) eigenvalues of A. Show
that

1 ≥
v>Av

‖v‖2

for every v ∈ Rn.38 Using that hom(Cr) =
∑n
i=1

r
i and hom(K2) =

∑n
i=1

2
i , prove that

t(C2k, G) ≥ t(K2, G)2k. (What happens if v = 1?)

Exercise 9.44. The proofs in this section can all be phrased directly in terms of the homo-
morphism density integral, without reference to the gluing algebra. Go back and rewrite some
of the proofs in this form. Which do you prefer?

38This is called the Rayleigh quotient ; it can be used to prove the Spectral Theorem and to approximate
eigenvalues.
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9.7 Advanced Voodoo

We start with a proposition.

Proposition 9.45. K2
2 ≥ P3.

Proof. Clearly39, t(P2,W ) ≥ 0 for any graphon W and P2 − P2 = 0 ≥ 0. Therefore their
product is nonnegative, and

0 ≤
s(

−
) {

= − . (9.5)

Rearranging finishes the proof.

Wait, you say. We already proved that P3 ≥ K2
2 , so it must be that t(P3,W ) = t(K2,W )2

for every graphon W . This isn’t true (take W = WP3), so the only logical conclusion is that
we’ve discovered a contradiction deep at the heart of mathematics.

Hold on there, bucko. There’s another possible resolution, and it’s that Proposition 9.45 is
false. As with most sticky parts of math, something’s hiding underneath the word “clearly”.
The statements in that sentence are true, and it’s also true that the product is nonnegative.
But that product is (

−
)

.

It has no labels, and there’s no guarantee that the inequality remains true once we add labels.
Indeed, we don’t even know what it means for a labelled graph to be nonnegative, since we
only defined ≥ for unlabelled graphs.

It’s instructive to go back to the integral formulas. let F be an unlabelled simple graph and
F • be a k-labelled graph whose underlying graph is F . Then JF •K = F , and F ≥ 0 means that∫

[0,1]k

tx(F •,W ) dx ≥ 0

for every W ∈ W0. But F ≥ 0 does not imply that tx(F •,W ) ≥ 0 for all x ∈ [0, 1]k. Here is a
more honest way to write the expression in (9.5):(

−
)( )

It’s now not at all clear that the left term is always nonnegative. Indeed, it isn’t: If K•2 denotes

the 1-labelled K2, then tx(K•1K2 − K1K
•
2 ,W ) = t(K2,W ) −

∫ 1

0
W (x, y) dy. If, for example,

W = WP3
, then this expression is negative if x ∈ (1/3, 2/3). So we can’t just multiply labelled

versions of nonnegative quantum graphs willy-nilly and expect the result to be nonnegative.
But there’s a way to actually get something out of this.

Definition 9.46. Let be a k-labelled quantum graph (that is, each of its constituents is
k-labelled). We write ≥ 0 if tx( ,W ) ≥ 0 for every W ∈ W0.

If 1, 2 ≥ 0, then J 1 2K ≥ 0. So this fixes things. In fact, it not only fixes things but
is also useful.

39This is when you should realize that something hinky is going on.
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9. homomorphism inequalities

Proposition 9.47. If F1 and F2 are simple graphs on the same vertex set, then

(F1 ∪ F2) + (F1 ∩ F2) ≥ F1 + F2.

Proof. Let k = v(F ) and choose a k-labelling of V (F1) = V (F2). Let F •1 , F •2 , and (F1 ∩ F2)•

be the k-labelled graphs corresponding to F1, F2, and F1 ∩F2)• that have this labelling. Since
F1∩F2 ⊆ F1, we have tx(F1,W ) ≤ tx(F1∩F2,W ) for all W ∈ W0. Therefore (F1∩F2)•−F •1 ≥ 0,
and

0 ≤
q(

(F1 ∩ F2)• − F •1
) (

(F1 ∩ F2)• − F •2
)y

= (F1 ∩ F2)− F1 − F2 + (F1 ∪ F2).
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10. extremal graph theory

10 Extremal graph theory

In this section, we prove a generalization of Mantel’s Theorem first published in 1941. This
theorem is commonly regarded as the beginning of extremal graph theory. (Of course, the
theorem was phrased without homomorphism densities.)

Theorem 10.1 (Turán). If G is a simple graph with t(K2, G) > 1− 1
n−1 , then t(Kn, G) > 0.

We will prove it as a consequence of the following theorem on homomorphism inequalities.

Theorem 10.2. Suppose that is a quantum graph, each of whose constituents is a complete
graph. Then ≥ 0 if and only if t( ,Kn) ≥ 0 for every n ≥ 1.

To prove this theorem, we need just one preliminary. Let H be a node-weighted graph
on n vertices (recall that each node i is assigned a weight αi ≥ 0 and

∑
αi = 1), and let

P = {V1, . . . , Vn} be a partition of [0, 1] into intervals with m(Vi) = αi. We let WH denote the
{0, 1}-valued step function on P with W = 1 on Vi × Vj if ij ∈ E(H) and 0 otherwise. For a
simple graph F , we define the homomorphism density of F in H by t(F,H) = t(F,WH). More
explicitly, t(F,H) =

∑
φ

∏
v∈V (F ) αφ(v), where the sum ranges over all homomorphisms φ from

F to the underlying graph of H.

Proof of Theorem 10.2. One direction is easy: If ≥ 0, then certainly t( ,Kn) ≥ 0 for every
n ∈ N.

For the other direction, we proceed by contapositive: Supposing that 6≥ 0, we find a
complete graph K that witnesses this, that is, such that t( ,K) < 0. To that end, suppose
that W is a graphon such that t( ,W ) < 0. Since the set of graphs is dense in graphon space,
the set of node-weighted graphs is, as well. There is a node-weighted graph H with t( , H) < 0.
We choose H to have the minimum number of vertices q among all such node-weighted graphs.
Further, since t( , H) is a continuous function of α1, . . . , αq, we may choose a graph H on q
vertices that minimizes t( , H).

If H had a node with weight 0 and H̃ were the graph obtained by deleting that vertex, then
t( , H) = t( , H̃). But H̃ has once fewer vertex than H; since H is minimal, all of its vertices
have positive weight.

At this point, it is useful to consider the weights α1, . . . , αq as indeterminates. Assume that
=
∑n
i=1 aiFi. Consider expanding the polynomial t( , H) =

∑n
i=1 ai

∑
φi

∏
v∈V (Fi)

αφi(v),
where the sum over φi is over every homomorphism φi : Fi → H. Since every Fi is complete,
every homomorphism φi is injective. This means that t( , H) considered as a polynomial in
the variables α1, . . . , αq is multilinear; that is, no term has a variable with degree 2 or more.

We now show that H must be a (node-weighted) complete graph. Suppose to the contrary
that H did not contain the edge ij. Temporarily fixing all variables other than αi and αj , we
have t( , H) = b1 + b2αi + b3αj for some b1, b2, b3 ∈ R, since no term contains both αi and αj .
Either b2 ≤ b3 or b3 ≤ b2; in the former case, consider the new graph H ′ obtained by deleting
vertex αj and replacing the weight on i by αi + αj . Then

t( , H ′) = b1 + b2(αi + αj) ≤ b+ b2αi + b3αj = t( , H) < 0.

But H ′ has q − 1 vertices, a contradiction to minimality. The other case is similar, so H is a
complete graph.

Finally, we show that every vertex of H is weighted 1/q. This will finish the proof,
because then WH = WKq , and t( ,Kq) < 0. Because H is complete, the polynomial∑
φi

∏
v∈V (Fi)

αφ(v) is symmetric (that is, it remains unchanged under any permutation of

the indices 1, . . . , q). This is simply because any permutation of the indices corresponds to a
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10. extremal graph theory

permutation of V (H), and a homomorphism into a complete graph composed with a permuta-
tion is still a homomorphsim (and vice versa, every homomorphism is such a composition). It
follows that t( , H) is symmetric in α1, . . . , αq, as well.

Choose any two vertices i, j ∈ V (H). Temporarily fix the variables other than αi and αj ,
we have t( , H) = c1 + c2αi + c3αj + c4αiαj for some c1, c2, c3, c4 ∈ R. But since t( , H) is
symmetric, c2 = c3, so t( , H) = c1+c2(αi+αj)+c4αiαj . Since we fixed all the other variables,
αi+αj =

∑
r 6=i,j αr is constant. So setting c = c1 +c2(αi+αj) gives that t( , H) = c+c4αiαj .

We chose t( , H) as a minimum, so αi and αj must be the values that minimize c + c4αiαj .
If c4 > 0, this is minimized when αi = 0 or αj = 0, which contradicts the minimality of q.
Otherwise c4 ≤ 0, in which case the expression is minimized when αi = αj . But we chose i and
j arbitarily, so all node weights are equal. In particular, αi = 1/q for every i ∈ V (H).

Since t(Kk,Km) = nk/nk, an equivalent formulation of Theorem 10.2 is that
∑n
k=1 akKk ≥

0 if and only if
∑n
k=1 akm

k/mk ≥ 0 for every m ≥ 1. Turán’s Theorem follows with a clever
application of this restatement.

Proof of Theorem 10.1. We prove the inequality

nnt(Kn,W )− (n− 1)t(K2,W ) + (n− 2) ≥ 0 (10.1)

for every graphon W . Setting = nnKn − (n − 1)K2 + (n − 2)K1, we recognize that Theo-
rem 10.2 can be applied. So to verify the inequality, we need only check that

f(m) := nn
mn

mn
− (n− 1)

m(m− 1)

m2
+ (n− 2)

is nonnegative for every n ≥ 1. If m < n, then the first term vanishes40, and we get

f(m) =
n− 1

m
− 1 ≥ 0.

If m ≥ n, then

f(m) >

(
n(m− n+ 1)

m

)n
+
n− 1

m
− 1.

Since n(m−n+1)−n = (n−1)(m−n) ≥ 0, the first term is at least 1, so f(m) > (n−1)/m > 0.
Setting t(Kn, G) = 0 in (10.1) shows that t(K2, G) ≤ 1− 1

n−1 .

To squeeze a bit more out of Theorem 10.2, we need a bit of convex geometry. A set A ⊆ Rn
is convex if the line segment between any two points in A is contained in A. The smallest closed
convex set that contains a given set A is called the convex hull of A, denoted conv(A). We
write conv(x1, . . . , xn) for conv({x1, . . . , xn}). There is an equivalent characterization (which
we won’t prove is equivalent41).

A hyperplane in Rn is an affine subspace of dimension n−1 (which means it’s the translation
of a linear subspace of dimension n−1). All hyperplanes can be written as {x ∈ Rn : 〈x, α〉 = a}
for some α ∈ Rn and a ∈ R, and each such set is a hyperplane. (The vector α is called a normal
vector to the hyperplane.) A half-space is, intuitively, one half of Rn that is cut off by a hyper
plane; algebraically, a half-space is {x ∈ Rn : 〈x, α〉 ≥ a} for some α ∈ Rn and a ∈ R.

Fact. The convex hull of A is the intersection of all half-spaces containing A.

Now fix some n ≥ 2, and let tW = (t(K2,W ), . . . , t(Kn,W )) for every graphon W and set
tG = tWG

for every graph G. We define Tn = {tW : W ∈ W0} ⊆ Rn−1. For example, the set
T3 looks something like this:

40Poof!
41If you want to learn more, it is a consequence of the Hyperplane Separation Theorem.
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10. extremal graph theory

K2

11
2

0

1
K3

You can see Mantel’s Theorem exhibited on the horizontal axis, in that the gray region

extends only to 1/2. The upper boundary of T3 is the curve K3 = K
3/2
2 from the Kruskal–

Katona Theorem. We’ll be able to prove some further results (including a uniqueness statement
for Turán’s Theorem) by studying this set. In fact, it’s enough (for us) to study its convex hull.

Corollary 10.3. conv(Tn) = conv(tK1 , tK2 , tK3 , . . . ).

Proof. Certainly conv(tKn
: n ∈ N) ⊆ conv(Tn), since each tKn

∈ Tn.
With every quantum graph =

∑n
i=1 aiKi we associate the half-space H = {x ∈ Rn−1 :∑m

i=2 aixi−1 ≥ −a1}. This definition is cleverly chosen so that tW ∈ H if and only if
t( ,W ) ≥ 0. That is, Tn ⊆ H if and only if ≥ 0. It follows from Theorem 10.2 that
Tn ⊆ H if and only if tKn ∈ H for every n ≥ 1. But then the same half-spaces contain Tn
as do {tKn

: n ≥ 1}, so they have the same convex hull.

From this, we can obtain the following sharpening of Turán’s Theorem.

Corollary 10.4. For every n ≥ 2,

max{t(K2,W ) : W ∈ W̃0 and t(Kn,W ) = 0} = 1− 1

n− 1

and the unique maximizing graphon is W = WKn−1
.

Proof. The first statement is just Turán’s Theorem rephrased. Setting = nnKn − (n −
1)K2 + (n − 2)K1, we found in the proof of Turán’s Theorem that t( ,Km) ≥ 0, and re-
examining the proof shows that equality holds if and only if m = n− 1. That is, tKn−1

lies on
the hyperplane boundary of H . Since conv(Tn) = conv(tKn

: n ≥ 1) and the other tKm
are

uniformly bounded away from the boundary of H (which can be shown with a slightly more
careful calculation of f(m) when m ≥ n), the only point tW that is on the boundary of H is
W = WKn−1 . Setting t(Kn,W ) = 0 in (10.1) and accounting for this information shows that
t(K2,W ) < 1− 1

n−1 for every graphon W except WKn−1 .

This geometric way of looking at things even gives a slick proof of Goodman’s inequality.

Alternate proof of Theorem 9.34. In T3, we have

tKn =

(
n− 1

n
,

(n− 1)(n− 2)

n2

)
.

Each of these points is contained in the parametrization
(
x, x(2x− 1)

)
. Since y = x(2x− 1) is

a convex function, conv(T3), and thus T3 itself is contained in the convex hull of this parabola.
In other words, if t(K3,W ) ≥ t(K2,W )(2t(K2,W )− 1) for every graphon W .

This proof method can be used to extend Goodman’s inequality to all complete graphs.

Exercise 10.5. If d = t(K2,W ), then t(Km,W ) ≥ d(2d− 1)(3d− 2) · · ·
(
(m− 1)d− (m− 2)

)
.
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Appendix: Miscellaneous proofs

A.1 Compactness of [0, 1]N

Proposition A.6. The set [0, 1]N is compact under the metric d(x, y) =
∑∞
i=1 2−i|xi − yi|.

Proof. Let (x(n)) ⊂ [0, 1]N. We want to find a convergent subsequence. First consider the

sequence (x
(n)
1 )n∈N. Since [0, 1] is compact, it contains a convergent subsequence (x

(n)
1 )n∈E1 .

Similarly, there is a subset E2 ⊆ E1 so that (x
(n)
2 )n∈E2

converges. Inductively, we choose a set

Ei ⊆ Ei−1 so that (x
(n)
i )n∈Ei

converges for all i ∈ N. Now choose elements nk ∈ Ek so that

nk > nk−1 for all k ∈ N (choose n1 ∈ E1 arbitrarily). For each i ∈ N, the sequence (x
(nk)
i )k∈N

is eventually a subsequence of (x
(n)
i )n∈Ei , so (x(nk)) converges pointwise so some x ∈ [0, 1].

Now we show that d(x(nk), x)→ 0. For any ε > 0, choose a K ∈ N so that 2−K < ε. Since
x(nk) → x pointwise, we consider the first K coordinates to see that

d(x(nk), x) =

∞∑
i=1

2−i|x(nk)
i − xi| ≤

K∑
i=1

2−i|x(nk)
i − xi|+

∞∑
i=K+1

2−i −→ 2−K < ε.

Since ε was arbitrary, d(x(nk), x)→ 0.

A.2 Cut distance of graph kernels

This section outlines a proof of Proposition 5.19.
Let G1 and G2 be two graphs on n1 and n2 vertices, respectively, and set W1 = WG1

and W2 = WG2 . One inequality is straightforward. We define the special partition I(m) =
{[k/m, (k + 1)/m] : 0 ≤ k < m} of [0, 1] into m intervals. Each vertex in WG1(N) corresponds
to an interval in I(n1N). So any bijection φ : V (G1(N1)) → V (G2(N2)) with n1N1 = n2N2

induces a bijection φ′ of the intervals in I(n1N1) and therefore a measure-preserving bijection
of [0, 1]. Then

d�(Gφ1 , G2) = ‖Wφ′

1 −W2‖� ≥ δ�(W1,W2).

Taking the minimal φ shows that δ̂�(G1, G2) ≥ δ�(W1,W2). Since WG(n) = WG for all n, the
inequality holds for all blowups of G1 and G2, so δ�(G1, G2) ≥ δ�(W1,W2). In short, each
bijection V (G1(N1)) → V (G2(N2)) is a measure preserving map applied to W1; since the cut
distance for kernels is the infimum over all measure-preserving maps, the kernel cut distance is
at most the graph cut distance.

The other direction is more technical. Let {S1, . . . , Sn1} and {T1, . . . , Tn2} be the interval
steps of W1 and W2, respectively. Fix a measure-preserving bijection φ : [0, 1] → [0, 1]. We

show that infn1N1=n2N2
δ̂�(G1(N1), G2(N2)) ≤ ‖Wφ

1 −W2‖�. Taking the infimum over all φ
then proves that δ�(G1, G2)) ≤ δ�(W1,W2).

If υ is a measure-preserving bijection of [0, 1] such that υ(Tj) = Tj for all 1 ≤ j ≤ n2, then
υ ◦ φ is a measure-preserving function, and

‖W υ◦φ
1 −W2‖� = ‖W υ◦φ

1 −W υ
2 ‖� = ‖(Wφ

1 −W2)υ‖�. = ‖Wφ
1 −W2‖�.

Define αi,j = m(φ(Si) ∩ Tj). Fix some N divisible by lcm(n1, n2). Carve up Tj into
intervals of length bαi,jNc/N for each 1 ≤ i ≤ n1 and one of length

∑n1

i=1(αi,j − bαi,jNc/N).
We choose a measure-preserving bijection υN that sends part of φ(Si) ∩ Tj to the interval
of length bαi,jNc/N in Tj , and the rest of all of the sets {φ(Si) ∩ Tj}i to the remaining
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interval of length
∑n1

i=1(αi,j − bαi,jNc/N) in Tj .
42 Further, we define a measure-preserving

bijection φN : [0, 1] → [0, 1]: Carve up each set Si into intervals of length bαi,jNc/N for each
1 ≤ j ≤ n2 and one of length

∑n1

j=1(αi,j − bαi,jNc/N). The map φN takes the interval of
length bαi,jNc/N in Si to the of the same length in υN (φ(Si) ∩ Tj); the remaining interval of
length

∑n1

j=1(αi,j − bαi,jNc/N) can be partitioned into intervals of length 1/N , and those are
mapped injectively in such a manner that each of their images is also an interval of length 1/N .

The kernels W υN◦φ
1 and WφN

1 agree on a set of measure at least

n1∑
i=1

n2∑
j=1

bNαi,jc
N

≥
n1∑
i=1

n2∑
j=1

(
αi,j −

1

N

)
= 1− n1n2

N
.

So WφN

1 →W υN◦φ
1 pointwise as N →∞, which implies that ‖WφN

1 −W υN◦φ
1 ‖1 → 0. Since φN is

a map on intervals of length 1/N , so it induces a vertex map φ̃ : V (G1(N/n1))→ V (G2(N/n2)).
Therefore

δ̂�(G1(N/n1), G2(N/n2)) ≤ d�(G1(N/n1)φ̃, G2(N/n2))

= ‖WφN

1 −W2‖�
≤ ‖WφN

1 −W υN◦φ
1 ‖1 + ‖W υN◦φ

1 −W2‖�
= ‖WφN

1 −W υN◦φ
1 ‖1 + ‖Wφ

1 −W2‖�.

Taking the limit as N →∞ shows that δ�(G1, G2) ≤ ‖Wφ
1 −W2‖�. Then taking the infimum

over all φ finishes the proof.

A.3 Maximization of cut norm

Proposition A.7. For any kernel W ∈ W, there exist sets S, T ⊆ [0, 1] so that

‖W‖� =

∣∣∣∣∣∣
∫

S×T

W (x, y)

∣∣∣∣∣∣ .
The outline of the proof is that we consider the more general integral

H(f, g) =

∣∣∣∣∣∣∣
∫

[0,1]2

f(x)W (x, y)g(y) dx dy

∣∣∣∣∣∣∣ ,
where f, g : [0, 1] → [0, 1] are measurable and show that the set of such integrals attains its

supremum. We then obtain sets S and T that maximize
∣∣∣∫S×T W (x, y) dx dy

∣∣∣ from a pair of

maximizing functions f and g.
The most difficult part of the proof is showing that H(f, g) attains a maximum. To prepare,

let’s do some fast-paced functional analysis.

A.3.1 Weak topologies

A topological field k is a field equipped with a topology such that addition, multiplication,
subtraction, and division are continuous. A topological vector space over k is a k-vector space
together with a topology where vector addition and scalar multiplication are continuous.

42Such a map exists! Try constructing one.
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Definition A.8. Let k be a topological field and X be a topological vector space over k. The
continuous dual space X∗ of X is the k-vector space of continuous linear functionals from X
to k.

The continuous dual space is a restriction of the usual dual space of a vector space to
continuous functionals.

Definition A.9. The weak topology on X is the coarsest topology such that each functional
in X∗ remains a continuous function. In other words, the weak topology is generated by
{φ−1(V ) : φ ∈ X∗ and V is open in k}. We say that a sequence (xn) ⊆ X weakly converges to

x ∈ X if it converges in the weak topology. In this case, we write xn
w−→ x.

What exactly are the sets in the weak topology, though? Well, the topology generated by
a set S ⊆ X can be constructed as follows:

1. Add ∅, X to S.
2. Take all finite intersections in S ∪ {∅, X}; call this collection SI .
3. Take all (not necessarily finite) unions of elements of SI ; call this Sτ .

It’s clear that Sτ is a subset of the topology generated by S, and it’s fairly straightforward to
check that Sτ is closed under finite intersections and arbitrary unions.43 So Sτ is the topology
generated by S.

The strength of the weak topology44 comes from the following result.

Proposition A.10. A sequence (xn) ⊆ X weakly converges to x ∈ X if and only if φ(xn) →
φ(x) for every φ ∈ X∗.

Proof. The forward direction follows directly from the fact that every φ ∈ X∗ is continuous
under the weak topology. For the other direction, assume that xn does not weakly converge to
x, so that there is an open set V in the weak topology such that {n ∈ N : xn 6∈ V } is infinite.
Because V is in the weak topology, it can be written as V =

⋃
α Vα, where each Vα is the finite

intersection of preimages of open sets in k.
Each set {n ∈ N : xn 6∈ Vα} is infinite, so choose some Vβ . It is a finite intersection

Vβ =
⋂m
i=1 φ

−1
i (Ui) where φi ∈ X∗ and the Ui are open in k. This means that at least one

set {n ∈ N : xn 6∈ φ−1
j (Uj)} is infinite. Then {φj(xn) ∈ k : φ(xn) 6∈ Uj} is infinite, so

φj(xn) 6→ φ(x).

There is a natural map from X into its double dual (X∗)∗: We send each x ∈ X to the
evaluation map Tx(φ) = φ(x). The weak* topology on X∗ is the coarsest topology so that each
Tx is continuous. That is, it is the weak topology induced by the set {Tx : x ∈ X}. If φn

converges to φ in the weak* topology, we write φn
w∗−−→ φ. Adapting Proposition A.10 to the

weak* topology yields the following result.

Proposition A.11. A sequence of continuous linear functionals (φn) ⊆ X∗ converges to φ ∈
X∗ in the weak* topology if and only if φn(x)→ φ(x) for each x ∈ X.

So weak* convergence is pointwise convergence.
Now let’s turn to a specific application. Let (Ω, µ) be a measure space and X = L1(Ω). We

have the following theorem.

Fact A.12. If (Ω, µ) is σ-finite (that is, Ω is the countable union of sets of finite measure),
then L∞(Ω) = (L1(Ω))∗ by associating h ∈ L∞(Ω) with the linear functional h̃(ζ) =

∫
Ω
ζh dµ.

43This is not the case if we reverse steps 2 and 3.
44if you will
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One part of the fact is easy to check: If h ∈ L∞(Ω), then h̃ is a linear functional on
L1(Ω). The main point of the theorem is that we can transfer the weak* topology to L∞(Ω)
via this correspondence. A sequence (hn) ⊆ L∞(Ω) converges in the (induced) weak* topology
to h ∈ L∞(Ω) if and only if h̃n converges pointwise, that is, if

∫
Ω
ζhn dµ →

∫
Ω
ζh dµ for all

ζ ∈ L1(Ω). At this point, we need one more fact.

Fact A.13 (Banach—Alaoglu theorem). Let X be a topological vector space. The closed unit
ball in X∗ is compact with respect to the weak* topology.

Applying this to X = L1(Ω), we find that: Any sequence (hn) ⊆ L∞(Ω) contained in
the unit ball of L∞(Ω) contains a subsequence (hnk

) that is weak*-convergent to a function

ĥ ∈ L∞(Ω), that is, so that
∫

Ω
ζhnk

dµ →
∫

Ω
ζĥ dµ for all ζ ∈ L1(Ω). In the proof, we’ll take

Ω = [0, 1] at some points and Ω = [0, 1]2 at others.

A.3.2 Proof of Proposition A.7

Recall that

H(f, g) =

∣∣∣∣∣∣∣
∫

[0,1]2

f(x)W (x, y)g(y) dx dy

∣∣∣∣∣∣∣ .
We may drop the absolute value by changing the sign of W if necessary to make the integral
positive. We first show that there are measurable functions f̂ , ĝ : [0, 1]→ [0, 1] so that H(f̂ , ĝ) =
supf,gH(f, g) =: I, where the supremum is taken over measurable functions f, g : [0, 1]→ [0, 1].
Take a sequence of functions H(fn, gn)→ I. Since (fn) and (gn) are in the unit ball of L∞(Ω),

we can choose a subsequence fnk

w∗−−→ f̂ and a further subsequence gnkm

w∗−−→ ĝ. To ease

the burden on the subindices, let’s assume that the original sequences converge in the weak*

topology to f̂ and ĝ.
We know that f̂ and ĝ are in the closed unit ball of L∞([0, 1]), so f̂ , ĝ : [0, 1]→ [−1, 1]. We

want to show that their range is actually in [0, 1] (up to a set of measure 0). Suppose for the

sake of contradiction that f̂ was negative on a set S of positive measure. Since fn ≥ 0 and fn
weak*-converges to f̂ , we have

0 >

∫
[0,1]

χS f̂ dx = lim
n→∞

∫
[0,1]

fnχS dx ≥ 0,

which is a contradiction. Therefore the images of f̂ and ĝ are in [0, 1].

At this point we have functions f̂ , ĝ : [0, 1]→ [0, 1], so it would be nice to claim that H(f̂ , ĝ)
are maximal by writing

H(f̂ , ĝ) =

∫
[0,1]2

f̂(x)W (x, y)ĝ(y) dx dy = lim
n→∞

∫
[0,1]2

fn(x)W (x, y)gn(y) dx dy = I. (A.2)

However, it’s not clear that the tensor product function fn ⊗ gn(x, y) = fn(x)gn(y) weak*-

converges to f̂ ⊗ ĝ, so the limit step is not justified. However, it is true, so we now finish up
the first part of the proof by justifying this step.

We define the function ηn = fn ⊗ gn; that is, ηn : [0, 1]2 → [0, 1] by ηn(x, y) = fn(x)gn(y).
Then (ηn) is in the closed unit ball of L∞([0, 1]2), so some subsequence weak*-converges to a

function η in the unit ball. We claim that η = f̂ ⊗ ĝ.
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The function η induces a measure on [0, 1]2 by µη(S) =
∫
S
η(x, y) dx dy. Similarly, f̂ ⊗ ĝ

induces the measure µf̂⊗ĝ(S) =
∫
S
f̂(x)ĝ(y) dx dy. Showing that η = f̂ ⊗ ĝ almost everywhere

is equivalent to showing that µη = µf̂⊗ĝ.

Lemma A.14. Let (X,µ) be a measure space and f and g be measurable functions on X.
Define the measure µf (S) =

∫
S
f dµ. Then f = g almost everywhere if and only if µf = µg.

Proof. If f = g almost everywhere, then µf (S) =
∫
S
f dµ =

∫
S
g dµ = µg(S) for all measurable

sets S. Now suppose that f 6= g on a set S with µ(S) > 0. Then either {x ∈ S : f(x) > g(x)}
or {x ∈ S : f(x) < g(x)} has positive measure. The arguments are symmetric, so suppose that
f > g on S. Then

µf (S)− µg(S) =

∫
S

f dµ−
∫
S

g dµ =

∫
S

(f − g) dµ > 0,

so µf 6= µg.

Now we show that µη = µf̂⊗ĝ. To verify this, we need only check a basis for the measure

space, so we’ll check product sets S × T , where S, T ⊆ [0, 1]. Using that ηn
w∗−−→ η and that

χSχT ∈ L1([0, 1]2), we have

µη(S × T ) =

∫
[0,1]2

χS(x)χT (y)η(x, y) dx dy

= lim
n→∞

∫
[0,1]2

χS(x)χT (y)ηn(x, y) dx dy

= lim
n→∞

∫
[0,1]

χS(x)fn(x) dx

∫
[0,1]

χT (y)gn(y) dy

= µf̂ (S)µĝ(T ) = µf̂⊗ĝ(S × T ).

It follows that η = f̂ ⊗ ĝ. Using weak* convergence of (ηn) in equation (A.2) shows that

H(f̂ , ĝ) is maximal.
To finish the proof, we show that we can choose a maximal f and g that are {0, 1}-valued.

Let f and g be functions so that H(f, g) is maximal and define

f1(x) =

{
1 if f(x) ≥ 1

2

0 if f(x) < 1
2 .

and f2(x) =

{
2f(x)− 1 if f(x) ≥ 1

2

2f(x) if f(x) < 1
2 .

Then f = 1
2f1 + 1

2f2. Using the triangle inequality and the maximality of H(f, g), we have

H(f, g) ≤ H
(

1

2
f1 +

1

2
f2, g

)
≤ 1

2
H(f1, g) +

1

2
H(f2, g) ≤ H(f, g).

Equality must hold in each step, so in particular H(f1, g) = H(f, g) is maximal and f1 is {0, 1}-
valued. (This is a more general technique called convex optimization; the same steps as above
show that the vertices of any convex combination will also be optimal.) We can now follow the
same procedure by fixing f1 and finding a {0, 1}-valued g1 so that H(f1, g1) is maximal.
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Every characteristic function χS is a measurable function from [0, 1] to [0, 1], so

‖W‖� = sup
S,T⊆[0,1]

∣∣∣∣∣∣
∫

S×T

W (x, y) dx dy

∣∣∣∣∣∣ ≤ sup
f,g : [0,1]→[0,1]

∣∣∣∣∣∣∣
∫

[0,1]2

f(x)W (x, y)g(y) dx dy

∣∣∣∣∣∣∣ .
But f1 and g1 are characteristic functions that achieve the supremum on the right, so the sets
S = f−1

1 (1) and T = g−1
1 (1) maximize the supremum for ‖W‖�. This finishes the proof.

A.4 Subderivatives

Definition A.15. Let φ : [a, b]→ R be a convex function. A subderivative of φ at x0 ∈ [a, b] is
a point c ∈ [a, b] so that φ(x) ≥ c(x− x0) + φ(x0) for every x ∈ [a, b].

We think of a subderivative as a line passing through (x0, φ(x0)) that lies below the curve
of φ in the plane. For example, φ(x) = |x| has no derivative at x = 0, but it does have a
subderivative. In fact, any real number in the interval [−1, 1] is a subderivative of |x| at x = 0.

Definition A.16. The subdifferential of a convex function at x0 is the set of its subderivatives
at x0.

Proposition A.17. Let φ : [a, b]→ R be a convex function and x0 ∈ [c, d]. Both of the limits

c = lim
x→x−0

φ(x)− φ(x0)

x− x0
and d = lim

x→x+
0

φ(x)− φ(x0)

x− x0

exist, c ≤ d, and the subdifferential of φ at x0 is the interval [c, d].

Proof sketch. Using convexity of φ, you can show that if x < y, then

φ(x)− φ(x0)

x− x0
≤ φ(y)− φ(x0)

y − x0
.

It follows that

lim
x→x−0

φ(x)− φ(x0)

x− x0
= sup
x<x0

φ(x)− φ(x0)

x− x0
and lim

x→x+
0

φ(x)− φ(x0)

x− x0
= inf
x>x0

φ(x)− φ(x0)

x− x0
,

so both limits exist. Once you have c and d at hand, the remaining two statements also
follow from convexity. (Each piece can be proven by assuming the negation and obtaining a
contradiction to convexity.)

Corollary A.18. If φ : [a, b] → R is a convex function and x0 ∈ [a, b], then there is a real
number m so that φ(x) ≥ m(x− x0) + φ(x0) for every x ∈ [a, b].
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