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1. the definition of homology

0. a very brief introduction
There is a subject called algebraic topology. Its goal is to overload notation as much as possible
distinguish topological spaces through algebraic invariants. You may be familiar with the funda-
mental group; this is one such invariant. The goal of (most) of this course is to develop a different
invariant: homology.

1. the definition of homology
Definition 1.1. A semisimplicial set X is a sequence of sets X0, X1, . . . and, for each n ∈ N0, a
collection of n+ 1 maps dni : Xn → Xn−1 for 0 ≤ i ≤ n that satisfy the simplicial identities

dn−1
i ◦ dnj = dn−1

j−1 ◦ d
n
i

whenever i < j.

The idea here is that a semisimplicial set will represent the triangulation of a topological space,
where X0 is the set of points, X1 is the set of edges, X2 the faces, and so on. In this triangulation,
we can label the vertices with natural numbers, and the map dni consists of “deleting the ith
smallest vertex on an n-dimensional face.” For example,

0
2

1

3

1

3
d20

1

2

3

1

3
d11

1

3

Exercise 1.2. Confirm the simplicial identity d10 ◦ d20 = d11 ◦ d20 in this picture.

Exercise 1.3. Prove that a semisimplicial set satisfies the identities

dn−1
i ◦ dnj = dn−1

j ◦ dni+1

whenever i ≥ j.

Because the superscripts are a bit cumbersome, and because algebraic topology has a long and
storied history of overloading notation, the functions dni are usually denoted simply di, with the
domain and range understood from context.

Triangulations are nice, but they’re pretty hard to construct for an arbitrary topological space.
If someone says “I have here a topological space X,” you certainly can’t triangulate the space.
That’s where the generality of semisimplicial sets comes in useful. We can always define a canonical
semisimplicial set on a topological space.

Definition 1.4. For each n ∈ N0, the standard n-simplex, denoted ∆n, is the convex hull of the
n+ 1 standard basis vectors in Rn.

Definition 1.5. Let X be a topological space. We denote by Singn(X) the set of all functions
from ∆n to X.

Each map in Singn(X) is called a singular n-simplex; the adjective simply indicates that it
may have cusps or any number of singularities. Given a map ∆n → X, we can easily construct
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1. the definition of homology

a different map ∆n−1 → x by restricting to a single facet1 of ∆n. (Of course, we need to relabel
the vertices, but this is done by simply maintaining their order.) If f : ∆n → X, we write di(f)
for the map obtained by restricting to the facet that does not contain the ith vertex. Perhaps you
can already see where this is going . . .

Definition 1.6. If X is a topological space, Sing(X) is the sequence of sets Sing0(X),Sing1(X), . . .
together with the maps di : Singn(X)→ Singn−1(X) for each 0 ≤ i ≤ n.

It’s not too hard to verify that Sing(X) is a semisimplicial set.

Exercise 1.7. Verify it.

Of course, it’s only very loosely like a triangulation, in that it’s not really one at all—it’s some
wildly infinite beast. But it’s what we have to work with. You’ll learn to love it.

And now we introduce the algebraic machinery—can’t do algebraic topology without it.

Definition 1.8. The abelian group Sn(X) of singular n-chains is the free abelian group generated
by Singn(X).

An n-chain is simply an element of Sn(X): A finite linear combination of n-simplices:
k∑

i=1

aiσi ai ∈ Z and σi ∈ Singn(X).

If n < 0, then Singn(X) = ∅ (by convention), so Sn(X) = {0}.

Definition 1.9. The boundary operator ∂n : Sn(X)→ Sn−1(X) is defined on Singn(X) by

∂n(σ) =
n∑

k=0

(−1)kdk(σ)

and extended linearly to all of Sn(X).

This is a weird definition, but the idea is this: A union of n-simplices σ1 ∪ · · · ∪ σm forms a
“boundary” exactly when ∂(σ1 + · · · + σm) = 0. This is not quite right (we can’t really take the
union of functions!), but it essentially is. The next exercises go into more detail, but you can skip
them if you want.

Exercise 1.10. Suppose σ1, . . . , σm ∈ ± Singn(X) (each σi is either an n-simplex or its additive
inverse in Sn(X)) and let ∇i denote the image of σi. Some of the facets of the ∇i might overlap
or coincide. Prove that if ∂n(σ1 + · · ·σm) = 0, the m(n+1) facets of the ∇i can be paired so that
the facets in each pair are exactly the same. (In other words, if ∂n

∑
i σi = 0, then

⋃
i∇i has no

“hanging” (n− 1)-dimensional boundaries.

Exercise 1.11. Suppose that ∇1, . . . ,∇m are the images of n-simplices in X that have a matching
as described in the previous exercise. Prove that there are n-simplices σ1, . . . , σm ∈ ± Singn(X)
such that σi = ∇i for every i and ∂n(σ1 + · · ·+σm) = 0. [Hint: This is hard! Here’s one method:
Finding these maps σi essentially corresponds to labelling each facet with ±1 so that there is at
most one more +1 than −1 or vice versa, and when you add up the labels on the facets that
coincide, you get 0. (Why?) To find one of these, transform it to a graph problem. Form an
undirected graph G with the vertex set {1, 2, . . . ,m} and draw an edge between i and j for each
facet of ∇i that’s paired with a facet of ∇j . (So if ∇1 and ∇2 share 2 facets, then there are 2 edges
between the vertices 1 and 2 in G.) Now you want to show that it’s possible to direct the edges of
G so that |indeg(v) − outdeg(v)| ≤ 1 for every vertex v. (Of course, the first step is figuring out
why this is what you want to do.)]

1 A facet of a simplex is what you get by taking the convex hull of all but one of its vertices.
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2. the basics of category theory

In short, if c ∈ Sn(X) and ∂n(c) = 0, there’s good reason to think of c as “having no poky
bits.” Here’s some associated definitions.

Definition 1.12. An n-cycle in X is an n-chain c such that ∂n(c) = 0. An n-boundary the image
of an (n+ 1)-chain. The corresponding sets are:

n-cycles Zn(X) = ker(∂n)
n-boundaries Bn(X) = im(∂n+1).

Exercise 1.13. Prove that Zn(X) and Bn(X) are subgroups of Sn(X).

If everything is as it should be, then ∂n(σ) should be an (n− 1)-cycle for every σ ∈ Singn(X).
Fortunately, this is the case.

Proposition 1.14. ∂n−1 ◦ ∂n = 0 for every n ≥ 1.
Proof. This is just a matter of record-keeping with the simplicial identities. To start:

(∂n−1 ◦ ∂n)(σ) =
n∑

k=0

(−1)k∂n−1dk(σ) =

n∑
k=0

(−1)k
n−1∑
r=0

(−1)rdrdk(σ).

Splitting by whether r < k or r ≥ k and applying the simplicial identities to the first case, this
becomes

n∑
k=1

∑
0≤r<k

(−1)r+kdk−1dr(σ) +
n−1∑
k=1

∑
k≤r≤n−1

(−1)r+kdrdk(σ).

Substituting k = `+ 1, the left sum becomes
n−1∑
`=0

∑
0≤r≤`

(−1)r+`+1d`dr(σ);

switching the order of summation in the second sum, we get
n−1∑
r=0

∑
0≤k≤r

(−1)r+kdrdk(σ).

These expressions differ only by a factor of −1, so the entire sum vanishes.

The boundaries are in some sense the trivial cycles—we can quotient by them to get the
interesting behavior.

Definition 1.15. The nth singular homology group of X is

Hn(X) = Zn(X)�Bn(X).

Intuitively, two n-cycles in Zn(X) become equivalent in Hn(X) if the space between them can
be filled in by an (n+1)-chain. Since you can’t fill a hole, this is (very roughly) how Hn(X) detects
them. Exactly how it detects them is a question best postponed.
Remark. Homology groups can be defined for any semisimplicial set X by mimicking the progression
here: Define Sn(X ) to be the free group on Xn and then copy the definitions of ∂n, Zn(X ), Bn(X ),
and Hn(X ) directly.

2. the basics of category theory
Otherwise known as “abstract nonsense.” It codifies a lot of assertions we have about functions.
This means there will be a lot of vocabulary.
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2. the basics of category theory

2.1. a lot of definitions
Definition 2.1. A category C consists of

1. a class2 of objects, denoted ob(C),
2. a set HomC(X,Y ) of morphisms for every pair of objects X,Y ∈ ob(C),
3. an identity morphism 1X ∈ HomC(X,X) for every X ∈ ob(C), and
4. an associativeassociativeassociativeassociativeassociativeassociativeassociativeassociativeassociativeassociativeassociativeassociativeassociativeassociativeassociativeassociativeassociative composition operation ◦ : HomC(X,Y )×HomC(Y, Z), usually written (f, g) 7→
g ◦ f .

There are lots of categories. Here are some common ones.

Example 2.2.
◦ The objects of the category Set are, naturally enough, sets, and a morphism from X to Y is

a function.
◦ The objects of Ab are the abelian groups, and the morphisms are group homomorphisms.
◦ The objects of Top are topological spaces, and the morphisms are continuous maps. ♦

Exercise 2.3. Show that every object has exactly one identity morphism.

Exercise 2.4. A morphism f : X → Y is called an isomorphism if there is a morphism g : Y → X
such that f ◦ g = 1Y and g ◦ f = 1X . In this case, g is called an inverse of f . Prove that every
morphism has at most one inverse.

Now we want to look at relationships between categories.

Definition 2.5. Suppose C andD are two categories. A functor F from C toD, denoted F : C → D,
assigns
◦ an object F (X) ∈ obD for every object X ∈ ob C and
◦ a morphism F (f) ∈ HomD(F (X), F (Y )) for every morphism f ∈ HomC(X,Y )

such that
◦ F (1X) = 1F (X) for every X ∈ ob C and
◦ F (g ◦ f) = F (g) ◦ F (f) for every pair of morphisms f, g ∈ C which can be composed.

Example 2.6.
◦ The map which sends every element and map to itself is the identity functor .
◦ The map Top→ Set that sends topological spaces to the set of path-connected components

and the continuous map f : X → Y to the map f∗ : π0(X) → π0(Y ) where f∗(C) is the
component that contains f(C)—this is a functor.

◦ If f : X → Y is a continuous map and σ ∈ Singn(X), then f ◦ σ ∈ Singn(Y ). If we define
Singn(f) = f ◦ σ, then the map Singn becomes a functor from Top to Set.

◦ Extending this, Sn is a functor from Top to Ab. ♦

There is, in fact, a “category” CAT of all categories, whose morphisms are functors. This raises
some set-theoretic issues—how could CAT be an element of itself? In short, it’s not. For us, suffice
it to say that CAT is a “larger” type of category.4

But anyway, that’s completely irrelevant. Category theory is an exercise in going down the
rabbit hole, so let’s pursue that instead. You have a category of categories? I raise you a category
of functors.

2 This is a “collection” that’s bigger than a set. (We need this because we want to consider, for example, the
category of sets, which is not, itself, a set.3) For all practical purposes, just think “collection” and you’ll be fine.
3 Why? If X were the set of all sets, then X = 2X , but Cantor told us that there’s no bijection between X and its
power set.
4 To be precise, Definition 2.1 is a definition of locally small categories. CAT is a type of category where the collection
of morphisms can be bigger than a set. You could show this, for example, by proving that there are at least as
many functors from Set to Set as there are objects.
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2. the basics of category theory

Definition 2.7. Suppose F,G : C → D. A natural transformation Θ: F → G consists of a
morphism ΘX : F (X) → G(X) for every X ∈ ob C such that the diagram below commutes
(which means that all the ways of getting from one point to another are equal; in this case,
that G(f) ◦ΘX = ΘY ◦ F (f)).

F (X) G(X)

F (Y ) G(Y )

ΘX

F (f) G(f)

ΘY

One way to think of this is that a natural transformation Θ: F → G provides a way of transi-
tioning from F to G. We start out with this picture:

X F (X) G(X)

Y F (Y ) G(Y )

F

G

f F (f) G(f)

F

G

and we fill in the missing bits with a map so that the non-dashed portion commutes:

X F (X) G(X)

Y F (Y ) G(Y )

F

G

f F (f)

ΘX

G(f)

F

G

ΘY

(It doesn’t make sense to say that the whole diagram commutes, for example ΘX ◦F = G, because
F and G are functors while ΘX is a morphism; you can’t compose them.) It’s nice to think of a
natural transformation schematically, like this:

C D
F

G

Θ

Exercise 2.8. If ΘX is an isomorphism for every X ∈ ob C, then Θ is called a natural isomorphism.
Suppose this is the case and define a new collection of maps Θ̄ with Θ̄′

X = Θ−1
X . Prove that Θ̄ is

also a natural isomorphism.

Example 2.9. Remember that Singn is a functor from Top to Set. For each 0 ≤ i ≤ n, the map
di is a natural transformation from Singn to Singn−1, which you can verify by checking that this
square commutes for every X,Y ∈ ob Top and continuous map f : X → Y :

Singn(X) Singn−1(X)

Singn(Y ) Singn−1(Y )

di

Singn(f) Singn−1(f)

di

♦
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2. the basics of category theory

Anyway, here’s your crazy new category:

Definition 2.10. Given two categories C and D, their functor category is denoted Fun(C,D); its
objects are the functors from C to D, and the morphisms are the natural transformations.

As a digestif, let’s introduce a final, easier construction.

Definition 2.11. Given a category C, its opposite category Cop has the same objects as C and a
morphism fop : Y → X for each morphism f : X → Y in C such that gop ◦ fop = (f ◦ g)op.

In short, Cop is formed by reversing the arrows in C; it’s a sort of dual to C. The basic idea is
that sometimes we have a map C → D that’s almost a functor, but it switches the directions of
the arrows. In this case, we can write it as an actual functor Cop → D.

Example 2.12. Consider the category VectR of real vector spaces with linear transformations as
homomorphisms. Recall that the dual of a vector space V is defined V ∗ = HomVectR(V,R). Each
morphism ϕ : W → V in VectR induces a map V ∗ → W ∗ by sending ψ ∈ V ∗ to ψ ◦ ϕ ∈ W ∗. So
(−)∗ is a functor from Vectop

R to VectR. ♦

2.2. categorifying homology
Now we apply all these definitions to the homology from Section 1. First, of course, we introduce
a new category.

Definition 2.13. The category ∆inj has the sets [i] = {0, 1, . . . , i}, for each i ∈ N0, as objects,
and the morphisms between objects are all order-preserving injections.

Exercise 2.14. Prove that ∆inj has
(
b+1
a+1

)
morphisms from [a] to [b].

It turns out that we can conceptualize semisimplicial sets equally well as functors ∆op
inj → Set.

This is because the simplicial identities are baked into the definition of ∆op
inj.

Exercise 2.15. Let ϕa
i denote the injective order-preserving function [a − 1] → [a] whose image

does not contain i. Prove that

(ϕa−1
i )op ◦ (ϕa

j )
op = (ϕa−1

j−1)
op ◦ (ϕa

i )
op

whenever i < j.

Starting with a semisimplicial set X , define F ([i]) = Xi for each i ∈ N0, and for a map
ϕ : [a] → [a + 1] whose image does not contain j, define F (ϕop) = da+1

j . Then extend F to all
morphisms in ∆inj by composition.

Exercise 2.16. Check that this is well-defined: it’s not clear that if ϕ1 ◦ ϕ2 = ψ1 ◦ ψ2, then
F (ϕ1)◦F (ϕ2) = F (ψ1)◦F (ψ2). [Hint: Show that each morphism [b]→ [a] in ∆op

inj can be written
uniquely in the form (ϕb

i1
)op ◦ · · · ◦ (ϕa+1

ib−a
)op such that i1 ≥ i2 ≥ · · · ≥ ib−a.]

Conversely, if F is a functor from ∆op
inj, Exercise 2.15 shows that the maps induced by (ϕa

i )
op

satisfy the simplicial identities. All told, then, we’ve transformed semisimplicial sets from a com-
binatorial idea to category-ey one:

Proposition 2.17. A semisimplicial set is a functor ∆op
inj → Set.

Of course, we can now look at its category: Fun(∆op
inj,Set), which we’ll call, unsurprisingly, the

category of semisimplicial sets. A morphism in this category is a natural transformation; in other
words, it’s a collection of maps from the objects of one semisimplicial complex to another that
commute with the maps dni .
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2. the basics of category theory

Example 2.18. Remember that Sing(X) is the semisimplicial set derived from X (see Defini-
tion 1.6). We can extend this to continuous maps in this way: If f : X → Y , then Sing(f) is the
natural transformation with constituent maps Sing(f)[n] = Singn(f). In other words, it’s exactly
what you’d expect (here, Xn is short for Singn(X)):

· · · X2 X1 X0 0

· · · Y2 Y1 Y0 0

di di

Sing2(f)

di

Sing1(f)

di

Sing0(f) 0

di di di di

This relies crucially on the fact that di is a natural transformation from Singn to Singn−1!
We claim that Sing, as it’s defined here, is actually a functor (from Top to Fun(∆op

inj,Set)).
The proof of this is essentially recursion to previous results. Is Sing(1X) = 1Sing(X)? Well, since
Singn is a functor for every n, then Singn(1X) = 1Singn(X), which means that, yes, Sing(1X) is the
identity on Sing(X). And Sing distributes across composition because each of the Singn do. So
there you go: A functor from Top to the set of semisimplicial sets. ♦

Example 2.19. The function Sn forms an abelian group from a topological space. We can extend it
to a functor as follows. We can define a group homomorphism from Sn(X) to Sn(Y ) by designating
its values on the basis Singn(X). So, given a continuous map f : X → Y , define Sn(f) as the group
homomorphism that sends σ : ∆n → X to f ◦ σ : ∆n → Y . Clearly Sn(1X) = 1Sn(X), and it’s easy
to check that Sn distributes over composition. So Sn : Top→ Ab. ♦

Exercise 2.20. Show that Zn, Bn, and Hn also extend to functors Top → Ab. (Make sure to
check that the map σ 7→ f ◦ σ sends each element Zn(X) to an element of Zn(Y ), each element of
Bn(X) to an element of Bn(Y ), and each element of Hn(X) to an element of Hn(Y ).)

Our ultimate goal is the homology groups. To get one step closer, let’s introduce one more
specialty category.

Definition 2.21. The objects of the category Fil are the integers, and it has exactly one morphism
from m to n if m ≥ n and no morphism from m to n if m < n.5

Quick check: Does this category actually exist? I’ve asserted that it has, but I haven’t given
any explicit morphisms so that you can check the axioms of a category. But actually building it
is not too hard: If ϕa is the morphism from m to m− 1, then the unique morphism from m to n
(when m < n) is ϕn+1 ◦ ϕn+2 ◦ · · · ◦ ϕm. (When m = n, the unique morphism is, of course, the
identity 1m.)

We can think of a functor A : Fil→ Ab as a diagram that looks like this:

· · · ∂3−→ A2
∂2−→ A1

∂1−→ A0
∂0−→ A−1

∂−1−−→ · · ·

where each of the Ai is an abelian group and each of the ∂i is a group homomorphism.

Definition 2.22. A chain complex of abelian groups is a functor Fil→ Ab such that ∂i ◦ ∂i+1 = 0
for every i ∈ Z.

Exercise 2.23. Verify that ∂i ◦ ∂i+1 = 0 if and only if im(∂i+1) ⊆ ker(∂i).

Now, of course, we group all of these into a category.

Definition 2.24. We denote by chAb the category of chain complexes, which is a subcategory of
Fun(Fil,Ab).

5 “Fil” is shorthand for filtration, though I’ve no idea why. I imagine the answer is a quick web search away.
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3. some explicit homology groups

In particular, the morphisms in chAb are natural transformations. A morphism f : A• → B•
looks like this:

A• · · · A2 A1 A0 A−1 · · ·

B• · · · B2 B1 B0 B−1 · · ·

f

In other words, it’s a collection of group homomorphisms Ai → Bi so that every square commutes.

Example 2.25. Given any semisimplicial set X , we can form the chain complex

· · · ∂3−→ ZX2
∂2−→ ZX1

∂1−→ ZX0
∂0−→ 0

∂−1−−→ 0
∂−2−−→ · · ·

where ∂n =
∑n

k=0(−1)kdk if n ≥ 0 and ∂n = 0 if n < 0. (Here ZXi denotes the free abelian group
generated by the elements of Xi.) We’ll call this map S•. We can extend this to a functor as
follows.

A morphism f : X → Y of semisimplicial sets is a collection of morphisms fi : Xi → Yi such
that dk ◦ fi = fi−1 ◦ dk for every k and i. (This is what it means for every square to commute.)
Each map fi extends uniquely to a group homomorphism f̄i : ZXi → ZYi, and it’s straightforward
to check that ∂k ◦ f̄i = f̄i−1 ◦∂k. So these maps comprise a morphism between chain complexes—in
short, S• : Fun(∆op

inj,Set)→ Ab is a functor. ♦

Example 2.26. We can extend the map Zn to arbitrary chain complexes by analogy: It takes in
a chain complex A• and outputs the kernel of ∂n. In other words, it’s a map from the objects of
chAb to the objects of Ab. Does it extend to a functor? Well, suppose f : A• → B•, so we get a
diagram like this:

· · · An An−1 · · ·

· · · Bn Bn−1 · · ·

∂A
n+1 ∂A

n

fn

∂A
n−1

fn−1

∂B
n+1 ∂B

n ∂B
n−1

We’d like to define Zn(f) to be the restriction fn|ker(∂A
n ), but we need to check that this is well-

defined: Is fn
(
) actually a subset of ker(∂Bn )?

This is relatively straightforward to check: Choose any x ∈ ker(∂An ). Using the diagram’s
commutativity, we have

∂Bn
(
fn(x)

)
= fn−1

(
∂An (x)

)
= fn−1(0) = 0,

so x ∈ ker(∂Bn ). So indeed, we can restrict fn to be a homomorphism Zn(A•) → Zn(B•), which
makes Zn a functor. ♦

Exercise 2.27. Show that Bn and Hn also extend to functors chAb→ Ab.

3. some explicit homology groups
Let’s take a brief break from the extreme abstraction and get our hands dirty. Our eventual goal
is to be able to (fairly) easily calculate Hi(X) for many different topological spaces, since we want
to be able to use them as an effective invariant.

3.1. this section has a point
Let’s begin with the easiest possible topological space: A single point X = {0}. There’s only a
single function ∆n → X; we’ll call this function an. This means that Singn(X) = {an}, and there’s
really no choice for the simplicial maps: dni is defined by an 7→ an−1 for every n and i.

8



3. some explicit homology groups

So Sn(X) is also quite simple: it’s the free group on the single element an. Our chain complex
looks like this:

· · · ∂3−→ Za2
∂2−→ Za1

∂1−→ Za0
∂0−→ 0.

The boundary maps, too, are easy to calculate:
∂0(a0) = 0

∂1(a1) = a0 − a0 = 0

∂2(a2) = a1 − a1 + a1 = a1

∂3(a3) = a2 − a2 + a2 − a2 = 0

· · ·
so ∂n(an) = 0 if n is odd or n = 0 and ∂n(an) = an−1 if n ≥ 2 is even. So

Zn(X) =

{
Zan if n is odd or n = 0

0 if n ≥ 2 is even
and Bn(X) =

{
0 if n is odd or n = 0

Zan−1 if n ≥ 2 is even

Putting it all together, we have
H0(X) = Za0/0 = Za0
H2n(X) = 0/0 = 0

H2n+1(X) = Za2n+1/Za2n+1 = 0.

In other words, Hn(X) = 0 if n > 0, which makes sense—we certainly don’t think of a point
as having any holes. But what’s up with H0(X)? Does it mean a point has a 1-dimensional hole
(whatever that means)?6 Nothing so bizarre as that.

Exercise 3.1. Let X be a topological space and π0(X) be the set of path-connected components
of X. Prove that H0(X) is isomorphic to the free abelian group generated by the elements of
π0(X). (More concisely: Zπ0(X) ∼= H0(X).)

Exercise 3.2. Let
⋃

i∈I Xi denote the disjoint union of the topological spaces {Xi}. Prove that
Hn

(⋃
i∈I Xi

)
∼=

⊕
i∈I Hn(Xi) for every n.

3.2. a bit of topology
When are two maps “the same”? Well, when they’re identical. But we can adopt a looser perspec-
tive once we put on our topology hats.

Definition 3.3. Let X and Y be topological spaces and f, g : X → Y be two continuous maps.
A homotopy from f to g is a continuous function h : X × [0, 1]→ Y such that h(x, 0) = f(x) and
h(x, 1) = g(x). If a homotopy from f to g exists, then we say that f and g are homotopic and
write f ' g.

One nice way to think of a homotopy is as a continuous deformation of one continuous function
to another, where the interval [0, 1] indicates a time parameter. “Deformation” is a good way to
think of homotopy: We can stretch and contract things, but we can’t tear them.

Example 3.4. Let f : [0, 1] → [0, 1] be defined by f(x) = 0 for all x ∈ [0, 1] and let ι denote the
identity function on [0, 1]. Then actually f ' ι, since

h(x, t) = tx

is a homotopy from f to ι. ♦

6 Remember that we think of Hn(X) as an account of the (n+ 1)-dimensional holes.
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3. some explicit homology groups

In fact, this example can be generalized: Let X be any topological space and Y ⊆ Rn be a
convex set equipped with the subspace topology. Then any two maps f, g : X → Y are homotopic,
since

h(x, t) = tf(x) + (1− t)g(x)
is a homotopy between them.

Of course, not all spaces are convex, and not all functions are homotopic.

Example 3.5. Equip Y = {0, 1} with the discrete topology and let X be any topological space.
We define f, g : X → Y to be the constant functions on 0 and 1 respectively. There is no homotopy
from f to g. To show this, fix a point x ∈ X and take any function h : X × [0, 1] → Y . Consider
the function ϕ(t) = h(x, t). Since ϕ−1(0) t ϕ−1(1) = [0, 1], at least one of these sets is not open.
But that means that ϕ is not continuous, which means that h is not continuous—and therefore
not a homotopy. ♦

Exercise 3.6. Show that ' is an equivalence relation on the set of continuous maps between two
fixed topological spaces.

Okay, so what’s the deal with homotopy? One reason is that it provides a looser, but still
reasonable, definition of similarity.

Definition 3.7. Two topological spaces X and Y are called homotopy equivalent if there are two
continuous maps f : X → Y and g : Y → X such that g ◦ f ' 1X and f ◦ g ' 1Y .

Certainly any homeomorphic spaces are homotopy equivalent, but many more pairs are homo-
topy equivalent than are homeomorphic. For example, the you can use Example 3.4 to show that
a single point is homotopy equivalent to a closed segment, but these two spaces are definitely not
homeomorphic—there’s not even a bijection from one to the other!

Exercise 3.8. Verify that [0, 1] is homotopy equivalent to a single point.

But here’s another reason, more firmly settled in algebraic topology.

Theorem 3.9. Suppose f and g are two morphisms X → Y in Top, and let Hn denote the
canonical functor Top→ chAb. If f ' g, then Hn(f) = Hn(g) for every n ∈ N0.

In other words, when f and g are “similar” in this particular way, then the morphisms of chain
complexes that they induce are actually equal. Theorem 3.9 is usually proved by showing that
Sn(gd) and Sn(g) are something called “chain homotopic” and then applying Proposition 3.13.

From this, we can form a new category. (And there I was telling you that this was going to be
concrete. Sorry about that.)

Definition 3.10. The homotopy category HoTop has the same objects as Top, but the morphisms
from X to Y are the homotopy equivalence classes of continuous functions from X to Y ; symboli-
cally:

HomHoTop(X,Y ) = HomTop(X,Y )�' .

There’s a canonical functor Φ: Top→ HoTop that sends each object to itself and each morphism
to its equivalence class. We can restate Theorem 3.9 in terms of this category by saying: There
exists a functor HoTop→ Ab such that the following diagram commutes for each n ∈ N0.

Top Ab

HoTop

Hn

Φ

10
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Because we bond by overloading notation in this class, we’ll also call this functor Hn.
We can rephrase homotopy equivalence in this category: A continuous map f : X → Y in Top

is a homotopy equivalence if Φ(f) is an isomorphism, and two spaces X and Y are homotopy
equivalent if they’re isomorphic in HoTop.

Corollary 3.11. If X and Y are homotopy equivalent, then Hn(X) = Hn(Y ) for every n ∈ N0.

This leads us to a Guiding Principle of algebraic topology:

Homology does not distinguish homotopic maps or homotopy equivalent spaces.

Let’s next look at how we can use this to actually compute homologies.

3.3. a little bit of magic
Here’s a definition.

Definition 3.12. Suppose that C• and D• are chain complexes and f0, f1 : C• → D•. A chain
homotopy h : f0 ' f1 is a collection of homomorphisms Cn → Dn+1 such that ∂h+ h∂ = f1 − f0.

You could now reasonably ask the question: Wait, what? Here’s what a chain homotopy looks
like:

· · · C2 C1 C0 C−1 · · ·

· · · D2 D1 D0 D−1 · · ·

∂ ∂

f0 f1
h

∂

f0 f1
h

∂

f0 f1
h

∂

f0 f1
h

∂ ∂ ∂ ∂ ∂

where the diagram doesn’t commute, but instead satisfies this strange relationship that ∂h+h∂ =
f1 − f0.

Of course, the real problem is that it’s not at all clear why anyone should care about such a
thing. In our case, the best motivation is simply that it works.

Proposition 3.13. If f0, f1 : C• → D• are chain homotopic, then Hn(f0) and Hn(f1) are identical
group homomorphisms Hn(C•)→ Hn(D•) for every n ∈ N0.
Proof. We need to show that

(
Hn(f0)

)
(c) =

(
Hn(f1)

)
(c) for every c ∈ Zn(C•). This is equivalent

to saying that f0(c)− f1(c) ∈ Bn(C•) for every c ∈ Zn(C•). We just unpack the definitions:

f1(c)− f0(c) = (∂h+ h∂)(c)

= ∂h(c) + h∂(c)

= ∂
(
h(c)

)
+ 0,

which is definitely an element of Bn(C•).

Okay, so now we have a not-very-enlightening proof of a proposition that, frankly, it’s not
entirely clear why we care about. Here’s why we care: Chain homotopies allow us to calculate the
homology groups of many more spaces. For example, consider this.

Definition 3.14. A set X ⊆ Rn is called star-shaped with respect to a point b ∈ X if the interval
{(tb + (1 − t)x : t ∈ [0, 1]} is contained in X for every point x ∈ X. (It’s sort of “convex from a
base point.”)

Exercise 3.15. Let X be a star-shaped region with respect to the point b (equipped with the subset
topology) and Y = {b} be a one-point topological space. Prove that X is homotopy equivalent to
Y .

11



3. some explicit homology groups

If you believe Theorem 3.9, then Exercise 3.15 implies that the homology groups of any star-
shaped region are the same as the homology groups of a point. The reason this is true is that
homotopic maps induce chain homotopic chain complexes. We’ll delay a proof of this, mostly
because we need this exact result in the proof. So for now, we’ll prove that star-shaped regions
and a single point have the same homology groups by directly using chain homotopies.

Theorem 3.16. If X is star-shaped, then Hn(X) ∼= Hn(•) for every n ∈ N0.
Proof. Let b be a point that X is star-shaped with respect to. Let A• denote the chain complex
where An = {0} when n 6= 0 and A0 = Z (there’s only one possible set of boundary maps for this
complex). We define two maps ε : S•(X)→ A and η : A• → S•(X).

· · · S2 S1 S0 0 · · ·

· · · 0 0 Z 0 · · ·

ε ε ε0 εη η η0 η

There’s only one way to define these maps except for η0 and ε0, which we define by ε0(x) = 1 for
every x ∈ X; and η0(1) = b.

We claim that Hn(η) and Hn(ε) are function inverses. If this is the case, then Hn(X) ∼= Hn(A•)
for every n ∈ N0, so Hn(X) ∼= Hn(•). Let’s get to it.

First, ε ◦ η is the identity 1A• ; since Hn is a functor, this means that Hn(ε) ◦Hn(η) = 1Hn(A•).
Now the reverse: We prove that η ◦ ε ' 1S•(X). We do this by defining a chain homotopy
h : η ◦ ε ' 1S•(X). Such a map looks like this:

· · · Sn+1 Sn Sn−1 · · ·

· · · Sn+1 Sn Sn−1 · · ·

hn+1 hn hn−1 hn−2

where δh + hδ = 1S•(X) − η ◦ ε. Each map should take in a linear combination of functions
σ : ∆n → X and output a linear combination of functions ∆n+1 → X. Here’s how we define it:

hn(σ) : (t0, t1, . . . , tn+1) 7→ t0b+ (1− t0)σ
(

1

1− t0
(t1, . . . , tn+1)

)
.

The denominator makes the entries sum to 1 so that we can apply σ. Essentially, hn turns an
n-simplex into an (n+ 1)-simplex by adding b as new vertex. We can calculate the effect of d0 on
h by substituting t0 = 0: We get d0h(σ) = σ. Likewise, by substituting ti = 0 for some 1 ≤ i ≤ n,
we find that dih(σ) = h

(
di−1(σ)

)
.

Plugging this into the boundary operator formula, we find that, when n ≥ 1,

∂n
(
h(σ)

)
= σ − h

(
∂n−1(σ)

)
;

when n = 0, the formula is
∂0
(
h(σ)

)
= σ − b.

These two formulas combine in the single formula

(∂nh+ h∂n)(σ) = σ − (ηε)(σ).

Or, in other words, ∂h+ h∂ = 1S•(X) − ηε, so h is a homotopy.

Don’t worry if that proof doesn’t make much sense. Basically you do a some things, say some
magic words, and the theorem is proved. That is, unfortunately, just the way this proof is.
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4. homology gets bigger and better

3.4. deformation retracts
Let’s talk about something more concrete.

Definition 3.17. A subset A ⊆ X (equipped with the subset topology) is a deformation retract
if there is a continuous map h : X × [0, 1]→ X such that
◦ h(x, 0) = x for every x ∈ X,
◦ h(x, 1) ∈ A for every x ∈ X, and
◦ h(a, t) = a for every a ∈ A and t ∈ [0, 1].

The idea is that a deformation retract is a kind of “nice compression” of the bigger space into
the smaller one. For example:

Exercise 3.18. Show that the point {0} is a deformation retract of [0, 1].

Example 3.19. The n-sphere Sn is a deformation retract of the space Rn+1 \ {0} via the map
h(x, t) = t x

|x| + (1− t)x. ♦

Deformation retracts are nice because they preserve homology groups, and they’re usually one
of the easier maps to find.

Exercise 3.20. Prove that any deformation retract of X is homotopy equivalent to X.

For example, the central point is a deformation retract of any star-shaped region, so their
homologies are equal.

4. homology gets bigger and better

1 Warning! This section was made in haste while I was tired. Expect a higher proportion
of errors and oversights and a lower proportion of motivation and explanation.

4.1. relative homology and the long exact sequence
Definition 4.1. Suppose that C• is a chain complex and Si ⊆ Ci for every i ∈ Z. If S• forms a
chain complex with the maps induced from C•, then S• is called a subcomplex of C•.

Exercise 4.2. Suppose that D• is a subcomplex of C•. Show that the induced maps ∂n : Cn/Dn →
Cn−1/Dn−1 are well-defined and form a chain complex.

The resulting chain complex is called the quotient of C• by D•, denoted C•/D•. Here’s why
we introduce it:7

Exercise 4.3. Suppose that D• is a subcomplex of C•. Show that
0→ Dn → Cn → Cn/Dn → 0

is a short exact sequence for every n.

Definition 4.4. If B•, C•, and D• are three chain complexes such that
0→ Bn → Cn → Dn → 0

is exact for every n, then we say that the sequence
0→ B• → C• → D• → 0

is exact.

7 At this point you should look up what an exact sequence is if you don’t know.
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So C•/D• somehow “completes” the short exact sequence. In fact, this extends to homology:

Theorem 4.5. If 0→ B•
f−→ C•

g−→ D• → 0 is exact, then there is an infinite exact sequence

· · · Hn+1(g)−−−−−→ Hn+1(D)→ Hn(B)
Hn(f)−−−−→ Hn(C)

Hn(g)−−−−→ Hn(D)→ Hn−1(B)
Hn−1(f)−−−−−→ · · ·

This sequence is called the long exact sequence.

Corollary 4.6. If A ⊆ X, then there is an exact sequence

· · · → Hn+1(X,A)→ Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ · · ·

with the maps Hn(A) → Hn(X) and Hn(X) → Hn(X,A) induced by S•(A) ↪→ S•(X) and
S•(X)→ S•(X)/S•(A).

I won’t prove this theorem; you can instead see a proof here. In essence, it relies on a double
application of the Snake Lemma, which is itself proved via diagram chase.

In practice, it turns out that you don’t really need to know much about the degree-lowering
maps Hn(X,A)→ Hn−1(A) except the fact that they make the sequence exact. We’ll see examples
of this in the next section. The maps themselves are often colloquially called the “snake maps,”
which is why I’ll denote them by ���n.

For now, let’s compute a very simple relative homology: Hn(X, {p}), where p is a point in X.
To do this, we need to get a handle on the sequence

· · · ∂n+2−−−→ Sn+1(X)�Sn+1(p)
∂n+1−−−→ Sn(X)�Sn(p)

∂n−−→ Sn−1(X)�Sn−1(p)
∂n−1−−−→ · · ·

We’ll use ∂Sn to denote the underlying boundary maps Sn(X) → Sn−1(X) and σn to denote
the unique map ∆n → {p}. Since di(σn) = σn−1 for every 0 ≤ i ≤ n, we have

∂Sn (σn) =

{
0 if n is odd
σn−1 if n is even.

To evaluate the kernel of ∂n, we consider instead the map ∂Sn . Let c denote an arbitrary element
of Sn(X) and a ∈ Z. For every n > 0:
◦ If n is odd, then ∂Sn (c + aσn) = ∂Sn (c), so the equivalence class c + Sn(p) ∈ ker(∂n) if and

only if every element of c+ Sn(p) is. This means that ker(∂n) = ker(∂Sn )/Sn(p).
◦ If n is even, then ∂Sn (c + aσn) = ∂Sn (c) + aσn−1. So for each class c + Sn(p) ∈ ker(∂n),

there is exactly one element c+ bσn such that ∂Sn (c+ bσn) = 0. This means that ker(∂n) =(
ker(∂Sn )⊕ Sn(p)

)
/Sn(p).

You can use the same sort of reasoning to figure out that
◦ If n is odd, then im(∂n) =

(
im(∂n)⊕ Sn−1(p)

)
/Sn−1(p).

◦ If n is even, then im(∂n) = im(∂Sn )/Sn−1(p).
We can conclude that, if n > 0, we have

Hn(X, {p}) =
ker(∂Sn )/Sn(p)

im(∂Sn+1)/Sn(p)
∼= Hn(X)

if n is odd and

Hn(X, {p}) =
(

ker(∂Sn )⊕ Sn(p)
)
/Sn(p)(

im(∂n)⊕ Sn−1(p)
)
/Sn−1(p)

∼= Hn(X)

if n is even. In short, if n > 0, then Hn(X, {p}) = Hn(X). What about n = 0? Well, ker(∂S0 ) =
S0(X), so ker(∂0) = ker(∂S0 )/S0(p); and we already know that im(∂S1 ) =

(
im(∂1)⊕ S0(p)

)
/S0(p).

So
H0(X, {p}) =

ker(∂S0 )/S0(p)(
im(∂1)⊕ S0(p)

)
/S0(p)

∼=
ker(∂S0 )

im(∂1)⊕ S0(p)
.
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Now, S0(p) ∼= Z, which means that
H0(X) ∼= H0(X, {p})⊕ Z.

We sum this up in a nice proposition:

Proposition 4.7. The relative homology of a point p ∈ X is given by

Hn(X) ∼=

{
Hn(X, {p}) if n > 0

Hn(X, {p})⊕ Z if n = 0.

Exercise 4.8. Use the long exact sequence to show that Hn(X, {p}) = Hn(X) for every n > 1.
[Hint: You already know the homology of a point.]

As a last note, we can, essentially as a reflex at this point, assemble this structure into a
category:

Definition 4.9. The category Top2 consists of the objects (X,A) where X ∈ Top and A ⊆ X,
and the morphisms from (X,A) to (Y,B) consist of the continuous functions f : X → Y such that
f(A) ⊆ B.

This category contains Top as a subcategory: Just restrict to the elements of the form (X, ∅).
Moreover, Hn is a functor Top2 → Ab for every n.

4.2. excision
Let’s give some thought to the geometric pictures that correspond to elements of Hn(X,A). El-
ements of Zn

(
Sn(X)/Sn(A)

)
are n-chains whose boundary lies in the set A. And elements of

Bn

(
Sn(X)/Sn(A)

)
are the usual boundaries, modulo the parts in Sn−1(A). So it seems that

Hn(X,A) behaves very much like we would expect Hn(X/A) to. Indeed, that is the content of the
Excision Theorem.

Theorem 4.10 (Excision). Suppose that X is a topological space and A ⊆ B ⊆ X such that
Ā ⊆ int(B) and A is a deformation retraction of B. In this case,

Hn(X,A) = Hn(X/A, {p})
for every n ∈ N0.

The conditions on A and B are relatively mild; for most spaces, we’ll have no trouble finding
such a B. It essentially guarantees that A isn’t “too nasty.”

How is the excision theorem proved? Well, actually, it uses a different version of the theorem;
we might call Theorem 4.10 “Excision in practice” and Theorem 4.11 “Excision in theory.”

Theorem 4.11. If X is a topological space and U ⊆ A ⊆ X such that Ā ⊆ int(B), then the
inclusion (X \ U,A \ U) ↪→ (X,A) induces a homology isomorphism

Hn(X,A) ∼= Hn(X \ U,A \ U).

We won’t prove this theorem. If you want, you can find a proof in Haynes Miller’s algebraic
topology notes or a high-level overview on the Wikipedia page.

What we will do is show how Theorem 4.11 implies Theorem 4.10.
To do so, we’ll need the an algebraic result:

Lemma 4.12 (Five lemma). If the following diagram of abelian groups is commutative, both rows
are exact, and f1, f2, f4, and f5 are isomorphisms, then f3 is, too.

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

f1 f2 f3 f4 f5
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4. homology gets bigger and better

The argument is just a bit of diagram chasing and is better relegated to a footnote.8 Now we’re
ready.

Theorem 4.11 implies Theorem 4.10. Suppose thatA andB satisfy the conditions of Theorem 4.10.
We use the following diagram in Top2:

(X,A) (X,B) (X −A,B −A)

(X/A, •) (X/A,B/A) (X/A− •, X/B − •)

i

f g

j

h

ı̄ ̄

Here, we temporarily write − to denote set subtraction for clarity, and • represents the point that
A is contracted to in the quotient. The maps i and j are the inclusion maps and ı̄ and ̄ are the
induced maps on the quotients. The maps f , g, and h are the projections onto the quotient spaces.

We want to show that f is a homology isomorphism. We know that j and ̄ are isomorphisms by
Theorem 4.11, and h is an isomorphism in Top2 since it’s a homeomorphism in both coordinates.

Now we show that i is a homology isomorphism. We use the long exact sequence:

· · · Hn(A) Hn(X) Hn(X,A) Hn−1(A) Hn−1(X) · · ·

· · · Hn(B) Hn(X) Hn(X,B) Hn−1(B) Hn−1(X) · · ·

i1 i2 i i3 i4

The maps i1 and i3 are homology isomorphisms because they are deformation retractions, and the
maps i2 and i4 are identity maps. By the five lemma, i is a homology isomorphism. You can argue
similarly that ı̄ is a homology isomorphism, since A is a deformation retract of B if and only if •
is a deformation retract of B/A.

Since our initial diagram commutes, we have f = ı̄−1 ◦ ̄ ◦ h ◦ −1 ◦ i; since each of these is a
homology isomorphism, so is f .

4.3. fundamental properties of homology: a list
Let’s summarize what we have so far: There are functors Hn : Top2 → Ab and natural transfor-
mations ���n : Hn(X,A)→ Hn−1(A, ∅) =: Hn−1(A) for every n ∈ N0 such that

1. The sequence

· · · Hn(A) Hn(X) Hn(X,A) Hn(A) · · ·
���n+1 ���n

is exact for every (X,A) ∈ Top2. (The unmarked maps are induced by the homology functor.)
2. If f1, f2 : (X,A)→ (Y,B) are homotopic, then Hn(f) = Hn(g) for every n.
3. If U ⊆ A ⊆ X and Ū ⊆ int(A), then the inclusion (X \ U,A \ U) induces a homology

isomorphism Hn(X,A) ∼= Hn(X \ U,A \ U) for every n.
4. Hn

(⊔
i∈I Xi

)
=

⊕
i∈I Hn(Xi).

5. Hn(•) ∼= {0} if n > 0 and H0(•) ∼= Z.

8 For example, here’s how you show that f3 is injective, suppose that f3(x) = 0. We let αi : Ai → Ai+1 and
βi : Bi → Bi+1. Then β3(f3(x)) = 0, so f4(α3(x)) = 0; this means that there is an element y ∈ a2 such that
α2(y) = x (by exactness). But then β2(f2(y)) = f3(α2(y)) = 0, so there is an element z ∈ B1 such that β1(z) =
f2(y). It has a unique preimage w in A1. Now f2(α1(w)) = β2(f1(w)) = β2(z) = f2(y); since f2 is an isomorphism,
α1(w) = y. But then x = α2(α1(w)) = 0 (the composition αi ◦ αi+1 = 0 by exactness). So f3 is injective.
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(Actually we haven’t defined homotopy in Top2, but it’s exactly what you would expect: f1 and
f2 are homotopic if there is a map h : X × [0, 1] → Y such that h(x, 0) = f1(x), h(x, 1) = f2(x),
and h(a, t) ∈ B for every a ∈ A and t ∈ [0, 1].)

These are the five basic properties of the homology operators, and a theorem by Eilenberg
and Steenrod states that these five properties actually characterize the homology operators in
sufficiently nice spaces (think, for example “spaces that can be triangulated”). For this reason,
these properties are called the Eilenberg–Steenrod axioms. Other theories have been proposed that
satisfy every axiom but the fifth—the so-called dimension axiom. These are called extraordinary
homology theories and include K-theory, bordism, topological modular forms, and Morava E-
theory.

But that’s incidental. The takeaway here is that to calculate homologies of spaces, you really
only need to know these five properties. So study them, take them to heart, and let’s get our
calculate on.

4.4. our first nontrivial homologies
First up, the circle S1. To take advantage of our results so far, we want to write S1 as a quotient
of two spaces we know the homologies of. That’s not so hard: S1 is homeomorphic to [0, 1]/{0, 1}
(taking the interval and gluing the endpoints together). So, set X = [0, 1] and A = {0, 1}. We
have a long exact sequence

· · · → Hn({0, 1})→ Hn([0, 1])→ Hn([0, 1], {0, 1})→ Hn−1({0, 1})→ Hn−1([0, 1])→ · · ·

Since {0, 1} is the disjoint union of two points, its homology group is

Hn({0, 1}) = Hn(•)⊕Hn(•) =

{
0 if n > 0

Z2 if n = 0.

And [0, 1] deformation retracts onto a point, so

Hn([0, 1]) = Hn(•) =

{
0 if n > 0

Z if n = 0.

And if n > 0, we have Hn([0, 1], {0, 1}) = Hn(S
1).

That is to say, for n ≥ 2, our diagram looks like this:

· · · → 0→ 0→ Hn([0, 1], {0, 1})→ 0→ 0→ · · ·

so Hn(S
1) ∼= 0 if n ≥ 2.

Now let’s unpack the map ϕ : H0({0, 1}) → H0([0, 1]). The domain is the free abelian group
generated by the maps ∆0 → 0 and ∆0 → 1. The latter is the free abelian group generated
by the single equivalence class [∆0 → p]. (Recall Exercise 3.1.) We can fix the an isomorphism
H0({0, 1}) → Z ⊕ Z by sending (∆0 → 0) 7→ (1, 0) and (∆0 → 1) 7→ (0, 1); we can also define
the isomorphism H0([0, 1])→ Z by sending the equivalence class [∆0 → p] 7→ 1. In this parlance,
then, the map ϕ is given by (a, b) 7→ a+ b.

The kernel of ϕ is therefore the free abelian group generated by (1,−1). Focusing on n = 1 in
the long exact sequence, we have

· · · 0→ 0→ H1(S
1)→ Z⊕ Z ϕ−→ Z→ · · ·

The map Hn(S
1) → Z ⊕ Z is injective (by exactness), and its image is the kernel of ϕ, which is

isomorphic to Z. So H1(S
1) = Z. And H0(S

1) ∼= Z, since S1 has exactly one path component.
(Be careful, though! H0([0, 1], {0, 1}) ∼= 0.) Altogether, we have
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Proposition 4.13. The homology of the circle is

Hn(S
1) ∼=

{
0 if n ≥ 2

Z if n = 0, 1

Exercise 4.14. Show that

Hn(S
q) ∼=

{
Z if n = 0, q

0 otherwise.

Corollary 4.15. Sp and Sq are not homeomorphic if p 6= q.
Proof. Any homeomorphism is a homotopy equivalence, so homeomorphic spaces have the same
homology groups, which spheres of different dimensions do not.

Corollary 4.16. If p 6= q, then Rp and Rq are not homeomorphic.
Proof. If Rp and Rq were homeomorphic, then Rp \{0} and Rq \{0} would be homeomorphic. But
these spaces deformation retract onto Sp and Sq, which do not share their homology groups.

Moreover, we already get a very famous theorem:

Theorem 4.17 (Brouwer’s fixed point theorem). If f : Dn → Dn is continuous, then there is a
point x ∈ Dn such that f(x) = x.

Inevitably, the person introducing this theorem mentions stirring coffee, but I’ll refrain, because
honestly, who stirs n-dimensional coffee?

Proof of Theorem 4.17. Suppose that no point is fixed, so that f(x) 6= x for every x ∈ Dn. We
define a new function g : Dn → Sn−1 setting g(x) to be the point where the ray from f(x) to x
hits the boundary of Dn. Note that g is continuous and g(x) = x for every x ∈ Sn−1. So the
composition

Sn−1 ↪→ Dn g−→ Sn−1

is the identity. But applying the functor Hn−1 yields that Z → 0 → Z is the identity, which is
clearly false: Contradiction.

4.5. locality and another theorem
The main part of proving Theorem 4.11 consists of proving the Locality Principle.

Definition 4.18. A collection A of subsets of X is called a cover if X =
⋂

A∈A int(A). Given a
cover, an n-simplex σ : ∆n → X is called A-small if im(σ) lies entirely inside one set of A. The set
SingAn (X) is the set of all A-small n-simplices, and SA

n (X) is the free abelian group it generates.

Theorem 4.19 (Locality principle). If A is a cover of X, then the inclusion of chain complexes
SA
• (X) ⊆ S•(X) is a homology isomorphism.

In other words, it doesn’t change the homology of a space if we only consider “small” simplices
(as measured by A). The proof of this is not so complicated in its overall shape: The basic idea
is to replace each “big” n-simplex with a sum of smaller n-simplices whose boundaries sum to the
original n-simplex. The difficulty is in doing this in an arbitrary topological space, and the details
are somewhat involved.

But with it, we can prove a new theorem about sequence homologies that is at times easier to
use than the excision theorem.
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Theorem 4.20 (Mayer-Vietoris). If X is a topological space and A = {A,B} is a cover of X, then
there is an exact sequence

· · · ∂n+1−−−→ Hn(A ∩B)
fn−→ Hn(A)⊕Hn(B)

gn−→ Hn(X)
∂n−→ · · ·

whose maps are defined as follows: Given the inclusions
i : A ∩B ↪→ A k : A ↪→ X
j : A ∩B ↪→ B ` : B ↪→ X,

we have
fn = Hn(i)⊕Hn(j)

gn = Hn(k)−Hn(`).

The condition that {A,B} is a cover of X is exactly the same as requiring that Ā ⊆ int(B).
Looks, familiar, eh?

Proof of Theorem 4.20. The maps are chosen exactly so that the sequence

0→ S•(A ∩B)
f−→ S•(A)⊕ S•(B)

g−→ SA
• (X)→ 0

is exact. Just expand this out into a long exact sequence of homology groups and use the locality
principle to note that HA

n (X) ∼= Hn(X).

4.6. more homology calculations
We have a new tool; let’s use it.

The circle
We’ll first calculate the homology of S1 again using this new method. We need to choose A and
B so that their interiors cover S1 and so that we know their homologies and that of A∩B. That’s
not so hard:

S1

=

A

∪

B

Importantly, we can’t take two half-circles, because their interiors don’t cover S1. Now, A ∩ B is
homeomorphic to two line segments, which deformation retracts to two points. So Hn(A ∩ B) ∼=
Hn(•)⊕Hn(•). And Hn(A)⊕Hn(B) ∼= Hn(•)⊕Hn(•). At this point, the mechanics are largely
the same. The long exact sequence expands out to 0 → Hn(S

1) → 0 if n ≥ 2, and we know that
H0(S

1) ∼= Z, so the we really only need to pay special attention to the case n = 1. In this case,
we need to look at g0 in the following diagram:

H1(A)⊕H1(B)→ H1(S
1)→ H0(A ∩B)

f0−→ H0(A)⊕H0(B)

The group H0(A∩B) is the free abelian group generated by a two equivalence classes: [∆0 → pu]
(the maps to a point in the upper part of A ∩ B) and [∆0 → p`] (the maps to a point in the
lower part of A ∩ B). The group H0(A) ⊕ H0(B) is likewise generated by the two equivalence
classes [∆0 → pA] and [∆0 → pB ]. If we call these equivalence classes u, `, a, and b, respectively,
then f0 sends nu + m` to (n + m)a + (n + m)b. So its kernel is isomorphic to Z. Noting that
H1(A)⊕H1(B) ∼= {0}, this means that H1(S

1) ∼= Z.
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The bagel
I won’t TikZ any pictures here, so hopefully my vivid prose is vivid enough. We set X = S1×S1,
the torus, and choose A and B to be two noodle-shaped tubes that together cover the torus. (It’s
like slicing a bagel in half the “wrong way,” but then elongating both sides so that their interiors
cover the whole bagel torus.) Then A and B are both homeomorphic to cylinders, and A ∩ B is
homeomorphic to the disjoint union of two cylinders. A cylinder deformation retracts onto a circle,
and we know a circle’s homology. So for n ≥ 3, both Hn(A) ∩Hn(B) and Hn−1(A ∩ B) are the
zero group; in the long exact sequence, we get

0→ Hn( )→ 0,

so Hn( ) ∼= {0} for every n ≥ 3.9 For n = 2, we get the exact sequence

0→ H2( )→ H1(A ∩B)
f1−→ H1(A)⊕H1(B).

The analysis of f1 here is very similar to the analysis of f0 for the sphere; the upshot is that
H2( ) ∼= Z. Now focus on the diagram

H1(A ∩B)
f1−→ H1(a)⊕H1(B)

g1−→ H1( )
∂1−→ H0(A ∩B)

f0−→ H0(A)⊕H0(B).

We know that im(f1) ∼= Z, and it’s just as simple to check that ker(f0) ∼= Z. Since the sequence is
exact, this means that im(∂1) ∼= Z and ker(g1) ∼= Z. Now, the sequence

0→ ker(g1)
g1−→ H1( )

∂1−→ coker(∂1)→ 0

is always exact. Since H1(A ∩ B) ∼= Z ⊕ Z, the cokernel of ∂1 is isomorphic to Z. Therefore
H1( ) ∼= Z⊕ Z, because of this here exercise:

Exercise 4.21. Prove that if 0 → Z → A → Z → 0 is an exact sequence of abelian groups, then
A ∼= Z⊕ Z.

Finally, H0( ) ∼= Z because the surface of a bagel is path-connected. To summarize,

Proposition 4.22.

Hn( ) ∼=


Z⊕ Z if n = 2

Z if n = 0, 1

0 if n ≥ 3.

I’ll conclude with a warning: It’s not always possible to recover a group from its surrounding
exact sequence.

Exercise 4.23. Find two nonisomorphic groups A for which there is an exact sequence 0 →
Z/2Z→ A→ Z/2Z→ 0.

5. cw homology

5.1. pushouts
We start, as is not so unusual, with a definition.

Definition 5.1. In a given category, a pushout of the diagram on the left is a commuting diagram
on the right

9 Gotcha! I’m gonna draw a TikZpicture anyway!
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A B

C

f

g

A B

C P

f

g pB

pC

with the universal property that, for any commuting diagram

A B

C Q

f

g qB

qC

there is a unique map P → Q such that the following extended diagram commutes:

A B

C P

Q

f

g pB
qB

pC

qC

You can show that if (pB , pC , P ) and (qB , qC , Q) are both pushouts, then the map P → Q is
in fact an isomorphism, so a pushout is unique (up to, well, isomorphism).

In Top, the pushout of the first diagram in Definition 5.1 is the topological space (B t
C)/{f(a) ∼ g(a) : a ∈ A}.

Example 5.2. The pushout of the diagram

∅ B

C

is the disjoint union B t C. ♦

Example 5.3. The pushout of
A B

•

f

is B/ im(f). ♦

In short, a pushout is (in Top, at least) a way to combine disjoint union and quotient in a
single framework.

Definition 5.4. If P is a pushout of the form∏
i∈I S

n−1 B

∏
i∈I D

n P

f

then we say that P is obtained from B by attaching n-cells.
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Example 5.5. The “figure eight” is obtained from a point by attaching 1-cells:

S0 t S0 •

D1 tD1 ♦

Example 5.6. If f(−1) = 1/3 and f(1) = 2/3, then this shape is also obtained by attaching a
1-cell:

S0 [0, 1]

D1

f

♦

Example 5.7. The torus can be obtained by attaching a 2-cell to the figure 8:

S1

D2

f

Here, the function f consists of beginning at the central point, going around the right circle
clockwise, then the left circle clockwise, then the left circle counterclockwise, the right circle coun-
terclockwise, and ending at the point again. It’s easier to see why the pushout is a torus if we
imagine the figure 8 with this quotient diagram:

If you identify the opposite edges of a square, you get a figure 8. And gluing a circle along the
edges of the figure 8 exactly consists of filling in this square, which results in a torus. ♦

This leads us to a definition and a new subsection.

5.2. cw-complexes
It’s like that old joke: “Oh, you know those algebraic topologists; every other one has a massive
CW-complex.”10

Definition 5.8. A CW-complex is a topological space X together with a so-called filtration by
subspaces:

∅ = Sk−1(X) ⊆ Sk0(X) ⊆ Sk1(X) ⊆ · · · ⊆ X
such that X =

⋃∞
i=0 Ski(X) and each Skk(X) is obtained from Skk−1(X) by attaching k-cells.

Moreover, X must have the weak topology obtained from this filtration: A ⊆ X is open if and
only if A

∣∣
Skk(X)

is open in Skk(X) for every k.

The C in CW-complex stands for cell, and the W stands for weak topology. The set Skk(X) is
called the k-skeleton of X.

10 . . . as in the style of Freud. Get it?
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Example 5.9. The torus is a CW-complex with the filtration

Sk−1( ) = ∅ Sk0( ) = {•}
Sk1( ) = Sk2( ) =

Skk( ) = for every k ≥ 3
♦

Example 5.10. Every sphere is a CW-complex formed by attaching one n-cell to a point. Its
skeleta are

Skk(S
n) =


∅ if k = −1
• if 0 ≤ k ≤ n− 1

Sn if k ≥ n. ♦

Example 5.11. This CW-structure is not unique. The n-sphere also has a CW-complex structure
made by attaching two k-spheres for every 0 ≤ k ≤ n. For example, we can construct S2 like this:

♦

In what follows, we say “a CW-complex X.” when X is a topological space, which is strictly
speaking bad form; but the skeletal CW-structure will be clear from context.

Definition 5.12. A CW-complex is called CW-complex if its skeleta eventually stabilize, if there
is an n ∈ N such that Skn(X) = X. The minimum such n is called the dimension of X. A CW-
complex is finite if it is finite dimensional and each skeleton is obtained by adding only finitely
many cells.

If we continue the second CW-construction of Sn indefinitely, we get S∞, the CW-complex
obtained by adding two n-cells at every step (and never stopping). It can be represented in RN by

{(x1, x2, . . . ) ∈ RN :

∞∑
i=1

x2i = 1 and all but finitely many coordinates are 0}

It turns out this space, even though it’s infinite-dimensional, isn’t actually very interesting.

Proposition 5.13. S∞ is homotopy equivalent to a point.
Proof. We define the shift operator T : S∞ → S∞ by (x1, x2, . . . ) 7→ (0, x1, x2, . . . ). First, T is
homotopic to the identity via the homotopy

h1(x, t) =
tx + (1− t)T (x)
‖tx + (1− t)T (x)‖ .

(To verify that the denominator is never zero, consider the first nonzero coordinate of x if t 6= 0;
if t = 0, then the denominator is also nonzero.) Also, T is homotopic to the map sending every
point to z = (1, 0, 0, . . . ) via

h2(x, t) =
tz + (1− t)T (x)
‖tz + (1− t)T (x)‖ .

So the identity is homotopic to the point morphism: S∞ is homotopy equivalent to a point.

We needed the middle step of T because the “homotopy” with the same style that you might
define from the identity to the point map,

h2(x, t) =
tz + (1− t)x
‖tz + (1− t)x‖ ,

has a denominator that is sometimes 0 (in particular, when x = −z and t = 1/2.
Anyway, that’s mostly a curiosity; here’s an infinite-dimensional space that’s not trivial.
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Definition 5.14. The real projective space RPn is the quotient of Sn by the equivalence relation
{x ∼ −x : x ∈ Sn}.

It turns out that RP0 is a point and RP1 is homeomorphic to S1, but RP2 is genuinely different
from S2. One way to think of it is as the set of lines through the origin in R3.

The projective space RPn can be given a CW-structure with one 0-cell, one 1-cell, . . . , and one
n-cell. Each cell is attached via a “double cover” of Sn−1 by itself. As we extended Sn to S∞, we
can also extend RPn to RP∞. This, it turns out, is not homeomorphic to a point, though it will
take a while to prove this.

Pop quiz. What’s the next thing we’re going to do?
(a) Abuse notation
(b) Draw a commutative diagram
(c) Form a category
(d) Form a chain complex

They’re all likely options in this course, but this time, it’s (c).

Definition 5.15. If X and Y are both CW-complexes, a continuous map f : X → Y is called
cellular if f

(
Skk(X)

)
⊆ Skk(Y ) for every k ∈ N0.

The category CWComp has all CW-complexes as objects, and the morphisms from X to Y
are the set of cellular maps. For example, the inclusion map Sn−1 ↪→ Sn is a cellular map if we
equip the n-spheres with the CW-structure in Example 5.11, but not if the spheres have the CW-
structure in Example 5.10. This gives an indication as to why a slightly less efficient CW-structure
is sometimes beneficial.

5.3. homology groups of cw-complexes
Fix a CW-complex X, and suppose the pushout that attches n-cells indexes the (n − 1)-spheres
by In. We’ll use Xn as shorthand for Skn(X).

Since Xn ⊆ Xn+1, we get (when q ≥ 1) a long exact sequence

· · · → Hq+1(Xn+1/Xn)→ Hq

(
Xn−1

)
→ Hq

(
Xn

)
→ Hq

(
Xn/Xn−1

)
→ · · · (1)

So we need to understand Xn/Xn−1. To do this, think of the pushout⊔
i∈In

Sn−1 Xn−1

⊔
i∈In

Dn Xn.

If Xn−1 is collapsed to a point, then so are the boundaries of each of the n-spheres that are
attached. So what we end up with is a bouquet of spheres, a collection of spheres joined to each
other at a single point: ⊔

i∈In

Sn

�⊔
i∈In

•.

This is usually denoted by
∨

i∈In
Sn; the symbol is the wedge sum. To determine the homology of

this space, we’ll look at the homology of Hq(
∨

i∈In
Sn, •) ∼= Hq(

⊔
i∈In

Sn,
⊔

i∈In
•). For this latter

homology group, we can analyze the exact sequence

Hq

( ⊔
i∈In

•
)
→ Hq

( ⊔
i∈In

Sn
)
→ Hq

( ⊔
i∈In

Sn,
⊔
i∈In

•
)
→ Hq−1

( ⊔
i∈In

•
)
→ Hq−1

( ⊔
i∈In

Sn
)
.
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If q 6= 0, n, then the middle homology group is flanked by two zero groups, so it is itself 0. If
q = n, then the homology groups of

⊔
i∈In
• are 0, so the middle homology group is isomorphic to

Hq(
⊔

i∈In
Sn) ∼= ⊕i∈InZ. Therefore, we’ve determined that

Hq

( ∨
i∈In

Sn, •
)
∼=

{⊕
i∈In

Z if q = n

0 otherwise.
(2)

Plugging in this fact into (1), we get the following result.

Theorem 5.16. If X is a CW-complex and q 6= n, n− 1, then Hq

(
Skn−1(X)

) ∼= Hq

(
Skn(X)

)
.

In particular, the homology groups of the skeleta eventually stabilize: If n ≥ q + 1, then
Hq(Xn) = Hq(Xq+1).

Exercise 5.17. Prove this.

Exercise 5.18. Show that Hq(Xn) = 0 if n ≤ q − 1. [Hint: Use the fact that X0 is a collection
of discrete points, so Hq(X0) = 0.]

Okay, so the homologies of the skeleta stabilize when n > q. But what about the homologies
of X? This is what we really care about.

Proposition 5.19. Hq(Xk) ∼= Hq(X) whenever k > q.
Proof sketch. Something something compactness.

So these relative homology groups Hn(Xn, Xn−1) hold a lot of information about X. As
algebraic topologists are wont to do, we now form a chain complex with them.

Definition 5.20. The cellular n-chains of a CW-complex X are the groups Hn(Xn, Xn−1).

How do we define a map Cn(X) → Cn−1(X)? As usual, we rely on the long exact sequence.
We have a sequence of maps

Cn(X) = Hn(Xn, Xn−1)
���n−−→ Hn−1(Xn−1)→ Hn−1(Xn−1, Xn−2) = Cn−1(X),

where the second map is induced by the inclusion (Xn−1, ∅) ↪→ (Xn−1, Xn−2). We denote the
composition of these maps by dn.

Theorem 5.21. C•(X) and the maps dn form a chain complex, called the cellular chain complex
of X. Moreover, Hn

(
C•(X)

) ∼= Hn(X) for every n ∈ Z.

The proof consists of constructing a large diagram and inspecting it. We’ll do that here, but feel
free to skip to the next section to see how this theorem is applied—so it’s clear why the statement
is even useful—before reading through the proof.

Proof of Theorem 5.21. As promised, first we get a great big diagram:

Hn+1(Xn+1, Xn) Hn−1(Xn−2)

Hn(Xn−1) Hn(Xn) Hn(Xn, Xn−1) Hn−1(Xn−1)

Hn(Xn+1) Hn−1(Xn−1, Xn−2)

Hn(Xn+1, Xn)

���

′
n+1

dn+1

`

i

dn

���n

j
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The columns and the rows are each from a homology long exact sequence. First up, the diagram
is commutative, dn ◦ dn+1 = j ◦���n ◦ i ◦���

′
n+1; since the row is exact, ���n ◦ i = 0, so dn ◦ dn+1 = 0.

This means that
(
C•(X), d) is a chain complex.

Next, we show that ker dn/ im dn+1
∼= Hn(X). First, ker dn = ker(j ◦���n). But Hn−1(Xn−2) =

0, so j is injective; that means that ker dn = ker���n. Exactness of the row shows that ker���n = im i.
But i is injective because Hn(Xn−1) = 0, so im i ∼= Hn(X). Now for im dn+1. Since i is injective,
im dn+1 = im(i ◦���′

n+1) = i(im���′
n+1).

Therefore, (keeping in mind that i is injective), we have that

ker dn/ im dn+1
∼= Hn(X)/ im���′

n+1.

Since Hn(Xn+1, Xn) = 0 by (2), this quotient is isomorphic to Hn(Xn+1). (See the following
exercise.) But from Proposition 5.19, Hn(Xn+1) ∼= Hn(X), which finishes the proof.

Exercise 5.22. Suppose that A f−→ B → C → 0 is an exact sequence of abelian groups. Show that
B/ im f ∼= C.

5.4. using the cellular chain complex
Let’s start with our standard first step: the sphere.11

Example 5.23. Equip S2 with the CW-structure from Example 5.10. Then

Cn(S
2) ∼=

{
Z if n = 0, 2

0 otherwise.

So the long exact sequence

· · · → C4(X)→ C3(X)→ C2(X)→ C1(X)→ C0(X)→ 0

becomes
· · · → 0→ 0→ Z→ 0→ Z→ 0.

The image of every map must be 0, and the kernel of every map is the entire group, so it’s easy to
read off that

Hn(X) ∼= Hn

(
C•(X)

) ∼= {
Z if n = 0, 2

0 otherwise.
♦

In this example, we didn’t even need to know anything about the maps dn : Cn(X)→ Cn−1(X),
but in general we will. Since these maps are defined in terms of the mysterious snake map, this
seems rather difficult. To work with them, we’ll need one more tool.

Definition 5.24. Any continuous map f : Sn → Sn induces a map f∗ : Hn(S
n) → Hn(S

n) of an
infinite cyclic group, and this map must be of the form f∗(x) = dx for some d ∈ Z. This integer d
is called the degree of f .

For example, identity map ι : Sn → Sn induces the identity map Hn(S
n) → Hn(S

n), so
deg(ι) = 1. The map sending Sn to a point on Sn has degree 0.

Degree is useful because it allows us to actually calculate the chain maps dn. Each of the
groups Cn(X) is free abelian, and we can choose a generating set where each element corresponds
to a sphere in the bouquet Xn/Xn−1. For each sphere α, let enα denote this element. This is the
basis we’d like to calculate in, but it’s unclear how the snake map will rearrange this basis. The
degree actually gives us the answer.

11 This is sort of a cheat, since we needed to know the homology of the sphere to prove things about cellular chain
complexes, but that’s no reason to quibble.
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Theorem 5.25. If n > 1, the map dn : Cn(X)→ Cn−1(X) is given by

dn(e
n
α) =

∑
β

dαβe
n−1
β ,

where the sum ranges over all spheres β in the bouquet Xn−1/Xn−2 and dαβ is the degree of the
composite map Sn−1 → Xn−1 → Sn−1

β : The first arrow is the attaching map of the boundary of α
(from the pushout), and the second arrow is the quotient map that collapses Xn−1 \ β to a point.

I won’t prove this. It consists of drawing a big diagram and chasing through it, and I wouldn’t
write the proof any more clearly than is written elsewhere. See, for example, these notes on
cellular homology; or, if for some reason you’d like a terser version of the same proof, see Hatcher’s
textbook.

Instead, it’s important to see how to use it. What Theorem 5.25 says is that to determine
dn(e

n
α), we just need to look at how the attaching map of α interacts with each (n− 1)-cell.

Let’s see how to use it. One important consequence is that if two n-cells α1 and α2 are attached
to X using the same attaching map, then dn(α1) = dn(α2). We can use that, for example, to
calculate the degree of slightly more complex maps.

Example 5.26. What is the degree of the reflection map over some hyperplane through the origin?
Let’s start with S1 and a reflection across the x-axis. If we equip S1 with the CW-structure from
Example 5.11, the reflection map is cellular, so it induces a map C•(S

1) → C•(S
1) of chain

complexes. Let’s say that the 0-cells of S1 are x and y and the 1-cells are u and v. Then
C0(S

1) ∼= Z{x, y} and C1(S
1) ∼= Z{u, v}, so we get a diagram like this:

Z{u, v} Z{x, y} 0

Z{u, v} Z{x, y} 0

d1

r ι

d1

The reflection is an identity on the 0-skeleton of S1 and interchanges u and v. So the map ι is the
identity, and r(u) = v, r(v) = u.

Since u and v have the same attaching map, d1(u) = d1(v), so u−v ∈ ker(d1). This means that
u− v represents an equivalence class in Hn

(
Cn(X)

)
. Setting x = u− v, we have r(x) = −x, so the

degree of r is −1. (We only need to check the multiplying factor for one element in Hn

(
Cn(X)

)
,

since it is the same for all elements.) ♦

Exercise 5.27. Show that the degree of reflection across a hyperplane through the origin is −1
for every dimension. (You should just follow the argument in Example 5.26.)

To get even more degree calculations for free, we can see that it plays nicely with function
composition.

Lemma 5.28. deg(f ◦ g) = deg(f)deg(g).
Proof. If f and g induce maps of a cyclic group that consist of multiplying by deg(f) and deg(g),
respectively, then f ◦ g consists of multiplying by deg(f)deg(g).

Corollary 5.29. If f is a homeomorphism, then deg(f) = ±1.
Proof. The degree of the the identity function is 1, so 1 = deg(f ◦ f−1) = deg(f)deg(f−1).

One more example of degree:

Example 5.30. The antipodal map on Sn is the one that sends x → −x. Each coordinate of Sn

has the form (x1, . . . , xn+1), and the antipodal map is the composition of a reflection for each
coordinate, so its degree is (−1)n. ♦
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Now let’s use CW homology to compute the homologies of the torus.

Example 5.31. From Example 5.7, the torus can be realized as a CW-complex with one 0-cell x,
two 1-cells u and v, and one 2-cell A. Its cellular long exact sequence is therefore

· · · → 0→ Z{A} → Z{u, v} → Z{x} → 0.

Since is connected, we know that H0

(
C0( )

) ∼= Z, so im(d1) = 0. Therefore ker(d1) =
Z{u, v}. Recall that A is attached by following u, then v, then the reverse of u, and then the
reverse of v. Symbolically, we might write the attaching map of A as uv←−u←−v .

Now let’s look at d2(A) using Theorem 5.25. If we compose the attaching map with the map
that quotients out everything but u, then we get the map sending S1 to u←−u . This map is homotopic
to the map sending S1 to a single point, so u←−u = 0 in H1

(
C•( )

)
. The degree of this map is 0;

similarly, the degree dA,v = 0. So d2(A) = 0u+0v = 0, which means that H1

(
C•( )

)
= Z{u, v}.

Finally, the kernel of d2 is Z{A}, and the image of d3 is {0}, so H2

(
C•( )

)
= Z{A}. In short,

then,

Hn( ) ∼= Hn

(
C•( )

) ∼=

Z if n = 0, 2

Z2 if n = 1

0 otherwise,
just as we computed before. ♦

Now let’s do a new homology calculation.

5.5. homology of real projective space
Remember that RPn is defined to be Sn/{x ∼ −x}: the sphere quotiented by the antipodal map.
We can also think of this space as Dn/{x ∼ −x : x ∈ Sn−1}. In this way, RPn is obtained from
RPn−1 by attaching a single n-cell via the map Sn−1 7→ Sn−1/{x ∼ −x}.

If we give Sn the CW-structure of Example 5.11, then the quotient map Sn → Sn/{x ∼ −x}
is a cellular map from Sn to RPn. For n = 2, we get a diagram like this:

· · · Z{a2, b2} Z{a1, b1} Z{a0, b0} 0

· · · Z{c2} Z{c1} Z{c0} 0

dS
2

f2

dS
1

f1 f0

dRP
2 dRP

1

where ai, bi are the i-cells of S2 and ci are the i-cells of RP2. We know that dSi (ai) = dSi (bi) for
every i ∈ {0, 1, 2}, since ai and bi have the same attaching map. So the kernel of dS1 is generated
by a1 − b1. We know that H1(S

2) = {0}, so dS2 (a2) = dS2 (b2) must generate the whole group, so
dS2 (a2) = ±(a1 − b1).

Now, what about these downward maps? For each pair of n-cells, the quotient map is the
identity on one of them; arbitrarily, let’s say it’s the identity on ai; then f(ai) = ci. What is the
action on bi? The antipodal map α sends bi to (−1)iai—the multiplicative factor is the degree
of the antipodal map on the boundary of bi. So fi(α(bi))) = (−1)ici. But the quotient map
Sn → Sn/{x ∼ −x} is invariant under antipodal interchange, so f(α(bi)) = f(bi).

Now we’re ready to calculate dRPi :
dRP2 (c2) = dRP2

(
f2(a2)

)
= f1

(
dS2 (a2)

)
= f1

(
± (a1 − b1)

)
= ±

(
c1 − (−c1)

)
= ±2c1.
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A similar calculation shows that dRP1 (c1) = 0. So we can write the cellular chain sequence of RP2

as
· · · → 0→ Z ±2−−→ Z 0−→ Z→ 0.

This makes it easy to see the homology:

Hn(RP2) ∼=


Z if n = 0

Z/2Z if n = 1

0 otherwise.

This is super weird. No. It’s borderline nonsensical. We introduced homology as measuring
the number of holes: Zk means k holes in a certain dimension: easy-peasy. But what in the world
does it mean to say you have one hole modulo even multiples? Hatcher has little to say about
it when it comes up; neither does Miller in his notes. Fortunately, there’s StackExchange, which
gives a little bit of intuition. But perhaps the best thing is to consider homology as simply an
invariant. In the wise words of StackExchange user D Wiggles,

Here’s another perspective. On some level, it doesn’t matter what homology measures.
The point is that it takes something very hard (topology) and turns it into something
easy (abelian groups). If someone “hands you” two topological spaces, you basically have
a useless pile of garbage. Great: Now you know what all the open sets are . . . How would
you ever tell two such things apart? The answer is homology. It’s easy to compute and
often lets you answer a hard question with relative ease.

5.6. geometric realization
Any semisimplicial set X can be realized as a CW-complex; X0 is the set of points, X1 is the set
of edges, and so on, and the maps di provide the attaching maps. This is called the geometric
realization of X . Here’s why it’s important: Every triangulation of a topological space X is a
semisimplicial set X , and it would be nice if we could calculate Hn(X) using the (probably much
nicer) chain complex X . This is indeed the case.

Theorem 5.32. If X is a semisimplicial set whose geometric realization is homeomorphic to X ∈
Top, then Hn(X) = Hn(X ) for every n ∈ Z.

The reason for this is simple: The cellular chain complex Cn(X) is the exact same as the chain
complex Sn(X ). We know that the homology computed from the cellular chain complex is the
same as the homology computed from the singular chain complex, so the homology groups must
be the same.

If you can find a finite triangulation of a space, this theorem makes calculating homology
groups quite simple. We won’t use it for a while—not until Example 7.18, where we calculate the
cohomology ring of the Klein bottle—but it’s good to know, regardless.

5.7. euler characteristic
Here’s an invariant that’s simpler to compute than homology but still can distinguish some spaces.

Definition 5.33. IfX is a finite CW-complex, the Euler characteristic ofX is χ(X) =
∑

k(−1)knk,
where nk is the number of k-cells in X.

The good thing about the Euler characteristic is that it’s very easy to compute. But it seems
to depend on the particular CW-structure we pick for X, which would make it rubbish as an
invariant. Luckily, that’s not the case. Here’s why.
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Theorem 5.34. χ(X) =
∑

k(−1)k rank
(
Hk(X)

)
, where the rank of a group G is the size of the

largest free abelian group it contains.12

This means that the Euler characteristic depends only on the homotopy type of the space. In
particular, it doesn’t depend on the choice of CW-structure.

The use of the Euler characteristic is in how extraordinarily easy it is to compute. So before
proving Theorem 5.34, let’s see the Euler characteristic in action.

Example 5.35. The sphere has a CW-structure with one n-cell and one 0-cell, so χ(Sn) = (−1)n+
1. ♦

Example 5.36. The torus has a CW-structure with one 2-cell, two 1-cells, and one 0-cell, so
χ( ) = 1− 2 + 1 = 0. ♦

So with this very short calculation, we can see that S2 and are not homeomorphic or even
homotopy equivalent. On the other hand, the Euler characteristic can’t distinguish S1 from S3

from . Nevertheless, it’s a good first invariant to check because it’s so quick.

Sketch of Theorem 5.34. First, do the exercise that follows this proof. We write Zk for ker(dk)
and Bk for im(dk) in the cellular chain sequence. Then

0→ Zk → Ck → Bk → 0

is exact (since Ck/ ker dk ∼= im dk), as is

0→ Bk+1 → Zk → Hk(X)→ 0

(since Hk(X) ∼= Zk/Bk+1). Combining, we get that

nk = rank
(
Ck(X)

)
= rank(Zk) + rank(Bk) = rank(Bk) + rank(Bk+1) + rank

(
Hk(X)

)
.

So in the formula for the Euler characteristic, rank(Bk) and rank(Bk+1) both appear in two terms,
but with opposite signs. So all that remains after cancelling is

∑
k(−1)k rank

(
Hk(X)

)
.

Exercise 5.37. If 0→ A→ B → C → 0 is an exact sequence of finitely generated abelian groups,
then rank(A) + rank(C) = rank(B). Prove this.

Exercise 5.38. Fill in the gaps in the proof of Theorem 5.34.

Our next goal is to develop some invariants that are more powerful than Euler characteristic
but easier to compute than homology.

6. homology with coefficients

6.1. what are coefficients?
For now and evermore, R is a commutative ring with unit. For our purposes, standard examples
are Z, Q, R, and Zp = Fp = Z/pZ (depending on your preferred notation). But you really can
use anything here: SLn(Z),

∏∞
n=2 Zn, and so on. But we won’t really deal with these more exotic

rings. Anyway.

12 The Fundamental Theorem of Finitely Generated Abelian Groups states that every finitely generated abelian
group G is isomorphic to Zr ⊕H for some finite abelian group H. The number r is the rank of G.
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Definition 6.1. If X is a semisimplicial set, then Sk(X ;R) denotes the free R-module generated
by Xk.13 The chain complex S•(X ;R) is obtained from these modules by defining the boundary
operators exactly as in Definition 1.9. If X is a topological space, we abbreviate S•

(
Singn(X);R

)
by S•(X;R). Given a chain complex S•(X ;R), the nth homology of X with coefficients in R is the
R-module Hn(X ;R) := ker ∂n/ im ∂n+1.

So, for example, S∗(X;Z) is just the regular chain complex of X that we’ve been studying all
along. In fact, everything that we’ve done so far could be repeated, essentially word-for-word, with
any commutative ring in place of the integers. In particular:
◦ Hk(X;R) is a homotopy invariant for every k ∈ N0 and commutative ring R.
◦ All of the Eilenberg–Steenrod axioms hold except the dimension axiom, which is replaced by

Hn(•;R) ∼=

{
R if 0
0 otherwise.

◦ All of our tools—like the long homology sequence, Mayer-Vietoris, and cellular chain complexes—
still work.

The second bullet point indicates that what we have now are extraordinary homology theories.
Even though they’re extraordinary, if you know the chain complex, they’re really not much different
to compute.

Example 6.2. Consider the topological space RP2. We know that its cellular chain complex
C•(RP2) looks like this:

· · · 0 Z Z Z 0.±2

∂2

0

∂1 ∂0

So the cellular chain complex C•(RP2;Q) looks like this:

· · · 0 Q Q Q 0.±2

∂2

0

∂1 ∂0

As before, it’s easy to read off the homology from this: the kernel of ∂0 is all of Q, and the image
of ∂1 is 0, so H0(RP2;Q) ∼= Q. And ker(∂1) = Q with im(∂2) = Q, so H1(RP2;Q) ∼= 0. Similarly,
H2(RP2;Q) ∼= 0.

We can compare the homologies with coefficients in Z or Q:

Hn(RP2;Z) ∼=


Z if n = 0

Z2 if n = 1

0 otherwise

 Hn(RP2;Q) ∼=

{
Q if n = 0

0 otherwise.

}

So homology with Q somehow picks out less than homology with Z does. On the other hand, if
you calculate out the sequence C•(RP2;Z2), you’ll find that

Hn(RP2;Z2) ∼=

{
Z2 if n = 0, 1, 2

0 otherwise.

}
Somehow homology with coefficients in Z2 can see that RP2 is 2-dimensional, while homology with
coefficients in Z cannot. ♦

It seems, from this example, that Hn(X;R) gives us genuinely new information: RP2 has a
nonzero homology group when we consider coefficients in Z2. It turns out, though, that Hn(X;R)
can always be determined by the homology groups Hn(X;Z).

13 What’s an R-module? It’s just a vector space, but over a ring instead of a field. In fact, if R is a field, then
R-modules just vector spaces over R. You’re familiar with another set of modules: Z-module are nothing more and
nothing less than abelian groups. See more here. A free R-module is isomorphic to ⊕i∈IR for some index set I.
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However, the relationship between these homology groups is complex. For some topological
spaces, we know the homology groups with coefficients in Q or Z2, but not in Z. One such
topological space is the space of k unordered points in the torus

configk( ) := {(x1, . . . , xk) ∈
k
: xi 6= xj if i 6= j}/Sk

(The quotient by Sk is a quotient by the action of the symmetric group.) For some reason, some
physicists really care about this space, and the homology groups will tell them something about
it. The homology groups are completely known—but only with coefficients in Q or Z2, not even
in Z3, let alone Z.

Also, if you have a big (but finite) simplicial set, then a computer can calculate the homology
of it for you. It’s been shown that these calculations are faster over Q than over Z. Practically
speaking, then, homology with coefficients is sometimes necessary to actually compute the groups,
either by hand or by computer. Moreover, it’s usually just easier to compute homology groups
over Z2 than over Z. The little niggle we had over the sign when we calculated Hn(RP2) in
Section 5.5—something that can become quite a headache in more complicated calculations—
completely disappears if we’re working in Z2, since +1 = −1.

So that’s why we want to study homology with coefficients. And anyway, we still have to prove
exactly how homology with Z-coefficients determines all the rest.

We’ll start with an algebraic prelude.

6.2. the categorical algebra of r-modules

1 I’m going to be a terse with the commutative algebra background here. If you’re not
familiar with modules over a ring, then consider reading Section 3 in these notes; that should
get you up to speed.

6.2.1. The category of R-modules
Definition 6.3. The category ModR has as objects the collection ofR-modules, and HomModR

(M,N)
is the collection of R-linear maps from M to N (that is, the maps f : M → N such that
f(x+ y) = f(x) + f(y) and f(rx) = rf(x) for every x, y ∈M and r ∈ R.)

So we have another category. This one’s a little different, because its Hom-sets aren’t just
sets. Given two module homomorphisms f, g ∈ HomModR

(M,N), there is another map h ∈
HomModR

(M,N) such that
h(x) = f(x) + g(x)

for every x ∈M . Moreover, if r ∈ R, then there is another map h̃ ∈ HomModR
(M,N) such that

h̃(x) = r · f(x)

for every x ∈ M . These operations actually make HomModR
(M,N) into an R-module. When we

consider this set as an R-module, we’ll write HomModR
(M,N); when we want to emphasize only

the set structure, we’ll omit the underline.
Let’s go deeper. For a fixed R-module M , we can define a map N 7→ HomModR

(M,N)
on the category of R-modules. Any map f : N1 → N2 induces a map HomModR

(M,N1) →
HomModR

(M,N2) given by g 7→ f ◦ g. The map we just defined is a functor ModR → ModR,
denoted HomModR

(M,−).
If we switch the positions and fix an R-module N , then HomModR

(−, N) is almost a func-
tor; it switches the arrows. The map f : M1 → M2 induces the map HomModR

(M2, N) →
HomModR

(M1, N) given by g : g ◦ f . This means that HomModR
(−, N) is a contravariant func-

tor, or in other words, a functor Modop
R → ModR.
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Putting the two together, we get a functor

HomModR
(−,−) : Modop

R ×ModR → ModR .

In every category, HomC(−,−) : Cop × C → Set is a functor. An internal Hom is a functor
HomC(−,−) : Cop × C → C. In short, then, the category ModR has an internal Hom.

6.2.2. Tensor products
Every category with an internal Hom has a type of product structure on its objects. Let’s begin
with the easiest case.

Example 6.4. In the category Set, the regular Hom functor is also an internal Hom, simply because
the image Hom is already a set. There is what’s called a currying isomorphism

HomSet(A×B,C) ∼= HomSet
(
A,HomSet(B,C)

)
,

where A × B is the usual product of sets. This isomorphism maps the element f : A × B ∈ C to
the map g : A → HomSet(B,C) given by g(a) =

(
b 7→ f(a, b)

)
. Furthermore, this isomorphism is

natural in each of the objects A, B, and C. To unpack that, if we denote the currying isomorphism
by ��, then whenever f : A→ D, the following square commutes.

HomSet(A×B,C) HomSet
(
A,HomSet(B,C)

)

HomSet(D ×B,C) HomSet
(
D,HomSet(B,C)

)
��

Hom(−,B)(f×1B) Hom(−,Hom(B,C))(f)

��

Similar conditions hold for B and C. ♦

The tensor product is a construct that generalizes this currying isomorphism. Given two R-
modules M and N , their tensor product is a new R-module M ⊗R N that satisfies the following
property.

Proposition 6.5. There is a currying isomorphism

HomModR
(A⊗R B,C) ∼= HomModR

(
A,HomModR

(B,C)
)

which is natural in A, B, and C.

A map f : A×B → C of R-modules is called bilinear if
◦ f(x+ z, y) = f(x, y) + f(z, y),
◦ f(x, y + w) = f(x, y) + f(x,w), and
◦ f(r · x, y) = r · f(x, y) = f(x, r · y)

for every x, z ∈ A and y, w ∈ B. You can check that the set HomModR

(
A,HomModR

(B,C)
)

is “the
same” as the collection of bilinear maps A⊕B → C, via the bijection that sends f : A×B → C to
the map g : A→ HomModR

(B,C) defined by g(a) =
(
b 7→ f(a, b)

)
. Among these maps, the tensor

product enjoys a certain universal property.

Proposition 6.6. There is a map ϕ : A × B → A ⊗R B such that: If f is any bilinear map
A × B → D of R-modules, then there is a unique R-module homomorphism A ⊗R B → D where
the following diagram commutes:

A×B A⊗R B

D

ϕ

f
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This is the way to think of tensor products abstractly. Sometimes it’s useful to think of them
concretely, which is when the construction of the tensor product comes in useful. You can read
more here, but the upshot is that the tensor product A ⊗R B is generated by elements denoted
a ⊗ b for each a ∈ A and b ∈ B. It is the “largest” R-module generated by these elements such
that these elements are bilinear. That means that:

(a1 + a2)⊗ b = a1 ⊗ b+ a2 ⊗ b
a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2 (3)
(ra)⊗ b = r(a⊗ b) = a⊗ (rb)

1 It’s important to note that while the elements a⊗ b generate A⊗R B, not every element
is necessarily of this form—the tensor product contains finite R-linear combinations of these
elements, as well.

Example 6.7. The element 0⊗ 0 is the identity element of A⊗R B. This is because

0⊗ 0 = (0 · 0)⊗ 0 = 0 · (0⊗ 0).

Moreover, a⊗ 0 = 0⊗ b = 0⊗ 0 for every a ∈ A and b ∈ B by doing the same trick of pulling out
a 0. ♦

Example 6.8. Suppose that p and q are distinct primes. What is Zp ⊗Z Zq? Well, we can choose
an element n ∈ Z such that np ∼= 1(mod q). So by the bilinearity of the tensor product, we have

a⊗ b = a⊗ (npb) = (pa)⊗ (nb) = 0⊗ (nb) = 0.

So every generating element of Zp ⊗Z Zq is 0, which means that the entire Z-module is zero. ♦

Example 6.9. What is Z4 ⊗Z Z2? There’s only one element, 1 ⊗ 1, that doesn’t have 0 in one
coordinate, so this is the only possible nonzero generator. We know that 2·(1⊗1) = 1⊗2 = 1⊗0 = 0,
so 1⊗ 1 is either 0 or has order 2. This means that Z4⊗Z Z2 is either isomorphic to the 0 group or
isomorphic to Z2. If it were isomorphic to the zero group, then we could write, using Proposition 6.5
with C = Z2, that

HomModR
(0,Z2) ∼= HomModR

(
Z4,HomModR

(Z2,Z2)
)
.

But the left side has only one element and the right side has at least 2 (since there are two
homomorphisms Z2 → Z2). So Z4 ⊗Z Z2 is not the zero group, meaning Z4 ⊗Z Z2

∼= Z2. ♦

This can be extended to a general calculation:

Proposition 6.10. Z/mZ⊗Z Z/nZ ∼= Z/ gcd(m,n)Z.

Here are some more properties of the tensor product

Proposition 6.11. R⊗R B ∼= B.
Sketch. The map f(r ⊗ b) = rb on the generators of R⊗R B extends to an isomorphism.

This proof sketch brushes one subtlety under the rug: When a map is defined on the generators
of A ⊗R B, you need to check that it’s well-defined, because each generator has multiple names
which follow from the generating relations in (3). In this case, it’s all good, and you can in general
prove that a map on the generators is well-defined by using Proposition 6.6.

Proposition 6.12. If M , N , and P are A-modules, then
1. M ⊗N ∼= N ⊗M (commutativity)
2. (M ⊗N)⊗ P ∼=M ⊗ (N ⊗ P ) (associativity)
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3. (M ⊕N)⊗ P ∼= (M ⊗ P )⊕ (N ⊗ P ) (distributivity)

Now we have everything we need to calculate the direct sum of any two finitely generated
Z-modules. Every finitely generated abelian group has the form Zr⊕A, where A is the direct sum
of finite cyclic groups. So to calculate the tensor product, you can just distribute the tensor of the
direct sums and then apply Propositions 6.10 and 6.11.

6.2.3. Exactness properties of the Hom functor and tensor product
There are some results worth stating:

Proposition 6.13 (Hom(M,−) is left exact). The sequence

0→ N1
f−→ N2

g−→ N3

of R-modules is exact if and only if the sequence

0→ Hom(M,N1)
f̄−→ Hom(M,N2)

ḡ−→ Hom(M,N3)

is exact for every R-module M .

Proposition 6.14 (Hom(−, N) is left exact). The sequence

M1
f−→M2

g−→M3 → 0

of R-modules is exact if and only if the sequence

0→ Hom(M3, N)
ḡ−→ Hom(M2, N)

f̄−→ Hom(M1, N)

is exact for every R-module N .

Proposition 6.15 (Tensor product is right exact). If the sequence

M1
f−→M2

g−→M3 → 0

of R-modules is exact, then the sequence
M1 ⊗R N

f⊗1N−−−−→M2 ⊗R N
g⊗1N−−−−→M3 ⊗R N → 0

is exact for any R-module N . (1N is the identity map on N .)

The proofs of the first two consist of unravelling the definitions; nothing interesting occurs.
The third statement can be proved that way, but it can also be proved in a more clever way by
utilizing the correspondence between tensor product and bilinear maps; see this proof.

It is not true that the tensor product is left exact. For example, 0→ Z ×p−−→ Z is exact, but it
is not exact after tensoring (over Z) with Zp. But if M is a free R-module, then it is left exact.

Exercise 6.16. Suppose that M is a free R-module. Show that if f : N1 → N2 is an injective
R-module map, then f ⊗ 1M : N1 ⊗R M → N2 ⊗R M is also injective.

That’s enough straight-up algebra for now. Don’t worry; we’ll be back for more soon.

6.3. quasi-isomorphisms and free resolutions
When we’re doing computations, in the end we don’t really care too much about the specific chain
complex that we’ve constructed; our focus is on its homology. This next definition is one way to
loosen the definition of equivalence for chain complexes with this in mind.

Definition 6.17. A map f : C• → D• of R-module chain complexes is called a quasi-isomorphism
if Hn(f) : Hn(C•)→ Hn(D•) is an isomorphism for every n ∈ Z.
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In practice, algebraic topologists (and homological algebraists more generally) only care about
chain complexes up to quasi-isomorphism.

Example 6.18. In the diagram

· · · 0 Z Z 0 · · ·

· · · 0 0 Zn 0 · · ·

f2

×n

f1 f0 f−1

the map f defined by fi = 0 if i 6= 0 and f0(x) = x mod p is a quasi-isomorphism. ♦

Exercise 6.19. Check this. First, does the diagram commute? (This ensure that f is actually a
chain map.) Second, what is Hn(f)?

We’d like to codify this equivalence of quasi-isomorphism into a category in which two chain
complexes are actually isomorphic if they are quasi-isomorphic in the category of chain complexes
of R-modules. Such a category exists; it is called the derived category (of chain complexes of R-
modules) and is denoted D(R). You can think of it as being formed from the category of R-module
chain complexes by adding formal inverse morphisms for every quasi-isomorphism. This idea runs
into set-theoretic issues: Since you also have to include the composition of any two morphisms, it’s
not clear that what you get at the end of this process is a category; some collections of morphisms
between two objects might be “too big” to be a set.

For this reason, none of the proofs here will rely on the existence of the derived category, but
its existence provides a better understanding and motivation of some of the definitions to come.

Definition 6.20. A free resolution of an R-module M is a chain complex C• of freefreefreefreefreefreefreefreefreefreefreefreefreefreefreefreefree R-modules
together with a quasi-isomorphism to the chain complex that has 0 everywhere except at degree
0, where it has M .

In the derived category, free resolutions are isomorphic to the module M , so they’re a bit nicer
to work with. Example 6.18 is, for example, a free resolution of Zn.

Exercise 6.21. Show that any finitely generated abelian group (considered as a Z-module) has
a free resolution with only two nonzero terms. (You’ll need to use the fundamental theorem of
finitely generated abelian groups.)

In R is a field, then every R-module is already free, so M itself (or, more properly, the chain
complex M• := · · · → 0→M → 0→ · · · ) is already a free resolution of itself.

Example 6.22. Chain resolutions are not unique. For example, here is a different resolution of
Zn:

· · · 0 Z⊕ Z Z⊕ Z 0 · · ·

· · · 0 0 Zn 0 · · ·

ε2

(a,b)7→(a,nb)

ε1 ε0 ε−1

Or one with three terms:

· · · 0 Z Z⊕ Z Z⊕ Z 0 · · ·

· · · 0 0 0 Zn 0 · · ·

ε3

1 7→(1,0)

ε2

(a,b) 7→(0,nb)

ε1 ε0 ε−1

♦

Now we get to something Fundamental.
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Theorem 6.23 (Fundamental lemma of homological algebra). Suppose M and N are R-modules
and F• and G• are free resolutions of M and N , respectively. For any R-module homomorphism
f : M → N , there is a chain map f∗ : F• → G• such that f = H0(f

∗) : M → N . Moreover, this
map is unique up to chain homotopy.

The chain map f∗ is called a lift of f .
The existence part of this proof is a classic “Who’s going to stop me?” argument: You pick

the maps f∗1 , f∗2 , . . . inductively, ensuring that the diagram commutes at each step. For example:
start with the diagram

F0 M

G0 N

f0

εM

f

εN

where H0(εM ) is an isomorphism H0(F•) → M and H0(εN ) is an isomorphism H0(G•) → N .
(These are the maps from the free resolutions.) First, note that this implies that εN is surjective;
if it weren’t, then H0(E•) ( N . Therefore, we define f0 like this: F0 is a free R-module on some
set S. For each s, choose an element xs ∈ G0 such that fεM (s) = εN (sx); then define f0(s) = t.
Booyah, a well-defined function that makes the square commute.

Then you extend the diagram like this:

F1 ker(εM ) F0 M

G1 ker(εN ) G0 N

f1 g0 f0

εM

f

εN

The leftmost horizontal maps are surjective; this comes from the commutativity of the free resolu-
tion diagram. The map g0 comes from the commutativity of the rightmost square in this diagram.
Now we pull the same trick: F1 is free on some set, yada yada yada. And so on and so forth.
(These notes provide a more detailed proof.)

That any two maps are chain homotopic is a bit harder to prove, but it should be believable,
because any two of these chain maps are the same under the homology functor.

6.4. tensor product of chain complexes
Here is a funky definition:

Definition 6.24. If C• and D• are two chain complexes of R-modules, then their tensor product,
denoted C• ⊗D•, has the module (C• ⊗D•)n =

⊕
p+q=n Cp ⊗RDq in degree n and the boundary

maps ∂n(cp ⊗ dq) = (∂cp)⊗ dq + (−1)pcp ⊗ (∂dq), where cp ∈ Cp and dq ∈ Dq.

Eventually, we’ll prove that the tensor product of two chain complexes associated to topological
spaces is the chain complex of the product space. If X and Y are CW-complexes, each n-cell in
X × Y is the products of a p-cell in X and an (n − p)-cell in Y ; this is a partial explanation for
the definition of the degree-n term in C• ⊗D•. The definition of the boundary map on C• ⊗D•
is just weird; we’ll discuss that later, after we’ve built up some machinery.

Example 6.25. There’s one very important case of a tensor product: Let R• denote the chain
complex · → 0→ M → 0→ · · · that has the ring R in degree 0 and the zero module everywhere
else. For any chain complex C• of Z-modules, we have (C• ⊗Z R•)n = Cn ⊗ R. This tensor
product is actually an R-module, and with a little investigation you’ll find that Hn(C• ⊗Z R•) =
Hn(C•;R). ♦
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This tensor product doesn’t come from an internal Hom, which makes it seem a little ad hoc. It
turns out that the derived category D(R) also has a tensor product, and this one does come from
an internal Hom. This tensor product is denoted ⊗L

R, where for historical reasons, the L stands
for “left” (this is simply because when you write out the statement of the currying isomorphism,
the tensor product appears on the left). It turns out that if C• or D• is a chain complex of free
R-modules, then

C• ⊗L
R D• ∼= C• ⊗R D•.

Now, we don’t really care so much about the actual chain complex C•⊗L
RD•; what we care about

is its homology.

Definition 6.26. If M and N are R-modules, then TorRi (M,N) := Hi(M• ⊗L
R N•).

Now, I said we wouldn’t do anything that assumed the existence of the derived category, and
it seems I just violated that rule. But fear not! We can show that this definition is well-defined
without using the derived category.

Proposition 6.27. If M and N are R-modules and F• and F ′
• are two free resolutions of M , then

Hn(F• ⊗R N•) ∼= Hn(F
′
• ⊗R N•).

With this in hand, we can instead define TorRi (M,N) = Hi(F• ⊗R N•) for any free resolution
F• of M ; this is well-defined up to isomorphism and doesn’t require any mention of the derived
category.

Warning: This proof isn’t very enlightening.

Proof of Proposition 6.27. We may use the fundamental lemma to obtain two lifts of the map
1M : M →M ; call them f : F• → F ′

• and g : F ′
• → F•. Now, g ◦ f : F• → F• is a lift of 1M ; but so

is 1F• , so these two maps are chain homotopic. Similarly, f ◦ g is chain homotopic to 1F ′
•
.

Now we have maps f ⊗ 1N• : F• ⊗ N• → F ′
• ⊗ N• and g ⊗ 1N•F

′
• ⊗ N• → F• ⊗ N•. Their

compositions are (g ⊗ 1N•) ◦ (f ⊗ 1N•) = (g ◦ f) ⊗ 1N• , which is chain homotopic to 1F• ⊗ 1N• .
Similarly, (f ⊗ 1N•) ◦ (g ⊗ 1N•) is chain homotopic to 1F ′

•
⊗ 1N• . This means that, after applying

the homology functors, f ⊗ 1N• and g⊗ 1N• are inverse functions; so F•⊗N and F ′
•⊗N have the

same homology groups.

This proof isn’t so important. What is important is that you can calculate Tor modules. So
let’s calculate.

Example 6.28. What is TorZi (Z2,Z4)? First, choose a free resolution of Z2, for example C• = · →
0→ Z ×2−−→ Z→ 0→ · · · . Then we can form the chain complex C• ⊗Z (Z4)•:

· · · → 0→ Z⊗Z Z4
a⊗b 7→ 2a⊗b−−−−−−−−→ Z⊗ Z4 → 0→ · · · .

But we know that Z ⊗Z Z4
∼= Z4 via the isomorphism a ⊗ b 7→ ab (see Proposition 6.11). So this

chain complex is isomorphic to

· · · → 0→ Z4
×2−−→ Z4 → 0→ · · · .

Now we can just read off the homology of this chain complex. The 0th homology is Z4/2Z4
∼= Z2,

and the 1st homology is 2Z4/{0}. So TorZ0 (Z2,Z4) ∼= TorZ1 (Z2,Z4) ∼= Z2. The higher Tor groups
are 0. ♦

Exercise 6.29. Show that TorZi (Z2,Z3) = 0 for every i.

Example 6.30. If R is a field, then TorRi (M,N) = 0 for every i > 0. This is because M• is already
a free resolution of M , and M• ⊗R N• ∼= (M ⊗R N)•. So TorRi (M,N) is the ith homology group
of the chain complex

· · · → 0→M ⊗R N → 0→ · · ·
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Similarly, if M is a finitely generated Z-module (i.e., a finitely generated abelian group), then
TorZi (M,N) = 0 if i > 1. This is because M always has a free resolution with at most two nonzero
terms. (See Exercise 6.21.) ♦

A final note: You can modify the proof of Proposition 6.27 to show that if G• and G′
• are two

free resolutions of N , then
Hn(M• ⊗R G•) ∼= Hn(M• ⊗R G

′
•).

In fact, you can extend the proof to show that

TorRi (M,N) ∼= Hi(M ⊗R G•) ∼= Hi(F• ⊗R G•)

for any two free resolutions F• and G• of M and N , respectively.

6.5. universal coefficient theorem
The homology coefficients can actually be even more general than commutative rings.

Definition 6.31. Let M be an abelian group and X a semisimplicial set. The chain complex of X
with coefficients in M is defined as S•(X ;M) = S•(X ;Z)⊗ZM•. If X = Sing(X), we write simply
S•(X;M). Similarly, the homology of X with coefficients in M is Hn(X ;M) = Hn

(
S•(X ;M)

)
.

A few comments are in order. First, if R is a commutative ring, then S•(X ;Z)⊗ZR• = S•(X ;R)
as it was defined before, except here we’re only considering it as an abelian group. Also, since
S•(X ;Z) is by definition a free group, the tensor product ⊗Z is the same as the tensor product ⊗L

Z
in the derived category.

Now, the punchline: The homology with Z-coefficients completely determines the homology
groups with any other coefficients.

Theorem 6.32 (Universal coefficient theorem). If C• is a chain complex of free Z-modules and M
is an abelian group, then

Hq(C• ⊗Z M) ∼=
(
Hq(C•;Z)⊗Z M

)
⊕ TorZ1

(
Hq−1(C•),M

)
.

Specializing to semisimplicial sets, we get

Hq(X ;M) ∼=
(
Hq(X )⊗Z M

)
⊕ TorZ1

(
Hq−1(C•),M

)
.

If M is a free abelian group, then TorZ1 (Hq−1(C•),M) = 0, because M• is already a free
resolution of M . So in this case, the formula simplifies even more to Hq(X ;M) ∼= Hq(X )⊗Z M .

This formula is a little odd, so before we prove it, let’s see how to use it.

Example 6.33. We can go back to our old friend S2 first. Theorem 6.32 tells us that

H2(S
2;Z2) ∼=

(
H2(S

2)⊗Z Z2

)
⊕ TorZ1

(
H1(S

2)⊗Z Z2

)
.

Now, H1(S
2) = 0 and H2(S

2) ∼= Z. So the right term of the direct product is 0 and the left term
is Z⊗Z Z2

∼= Z2. Therefore H2(S
2;Z2) ∼= Z2, just as we expected. ♦

Example 6.34. Next, let’s calculate H2(RP2;Z2). This time, H2(RP2) ∼= 0 and H1(RP2) ∼= Z2.
So

H2(RP2;Z2) ∼=
(
H2(RP2)⊗Z Z2

)
⊕ TorZ1

(
H1(RP2)⊗Z Z2

)
∼= (0⊗Z Z2)⊕ TorZ1 (Z2,Z2).

You can calculate that TorZ1 (Z2,Z2) ∼= Z2, so H2(RP2;Z2) ∼= Z2. ♦
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1 The isomorphism in Theorem 6.32 is not natural in the terms C• and M . For example,
the antipodal map S2 → RP2 induces an isomorphism H2(S

2;Z2) → H2(RP2;Z2); but it
does not induce an isomorphism H2(S

2) ⊗ Z2 → H2(RP2) ⊗ Z2, simply because no map
can—these are different groups. (The map TorZ1

(
H1(S

2),Z2

)
→ TorZ1

(
H1(RP2),Z2

)
is also

not an isomorphism.)

Proof of Theorem 6.32. First, if M is a free module, then

Hq(C•)⊗Z M ∼=
⊕

1≤i≤rank(M)

Hq(C•) ∼= Hq(C• ⊗M).

We noted above that TorZi (C•,M) = 0 if M is free, so this proves the theorem in this case.
Otherwise, let F• = · · · → 0→ F1 → F0 → 0 be a free resolution of M . The sequence

0→ F1
α−→ F0 →M → 0

is exact; since each of the groups in C• is free, Proposition 6.15 and Exercise 6.16 tell us that the
sequence

0→ C• ⊗ F1 → C• ⊗ F0 → C• ⊗M → 0

is exact. This is a short exact sequence of chain complexes, so it gives us a long exact sequence in
homology:

· · · → Hq(C• ⊗ F1)
f−→ Hq(C• ⊗ F0)→ Hq(C• ⊗M)

���−→ Hq−1(C• ⊗ F1)
g−→ Hq−1(C• ⊗ F0)→ · · ·

Each long exact sequence can be cut into short exact sequences; so we get the short exact sequence
0→ coker(f)→ Hq(C• ⊗M)→ ker(g)→ 0.

The cokernel of f is
Hq(C• ⊗ F1)/f

(
Hq(C• ⊗ F0)

) ∼= (
Hq(C•)⊗ F1

)
/
(
Hq(C•)⊗ α(F0)

)
since both F0 and F1 are free. It’s a general fact about tensor products that if L1 ⊆ L2 and N are
all R-modules, then (N ⊗ L2)/(N ⊗ L1) ∼= N ⊗ (L2/L1). In this case, we get

coker(f) ∼= Hq(C•)⊗ F0/f(F1) ∼= Hq(C•)⊗M.

The kernel of g is isomorphic to the kernel of the map 1 ⊗ α : Hq−1(C•) ⊗ F1 → Hq−1(C•) ⊗ F0.
But this is by definition TorZ1

(
Hq−1(C•),M).

Putting this together, we have a short exact sequence
0→ Hq(C•)⊗M → Hq(C• ⊗M)→ TorZ1

(
Hq−1(C•),M)→ 0.

One can show that this exact sequence splits, so that the middle term is the direct sum of the
outer two.

The universal coefficients theorem can be strengthened:

Theorem 6.35 (Universal Coefficients Theorem 2.0). If R is a principal ideal domain and C• and
D• are chain complexes of R-modules where every R-module in C• is free, then there is a short
exact sequence

0→
⊕

p+q=n

(
Hp(C•)⊗R Hq(D•)

)
→ Hn(C• ⊗R D•)→

⊕
p+q=n−1

TorR1
(
Hp(C•),Hq(D•)

)
→ 0

that splits, but not naturally. In particular, if every homology group is free, then the Tor term
vanishes, and

Hn(C• ⊗F D•) ∼=
⊕

p+q=n

(
Hp(C•)⊗F Hq(D•)

)
.
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This theorem takes some more work. One nice way to do this is to use the derived category.
You first show that the sequence

· · · 0−→ H2(D•)
0−→ H1(D•)

0−→ H0(D•)→ 0

is quasi-isomorphic to D•. This is plausible, since all the homology groups are the same, but that’s
not enough: You need to find an actual sequence of quasi-isomorphisms that sends D• to this new
sequence. But once you do this, UCT2.0 just becomes a direct sum of applications of UTC1.0.
Pretty nice.

Now we get a second payoff—the homology of the product of two spaces.

Theorem 6.36 (Eilenberg–Zilber). For any two topological spaces X and Y and any commutative
ring R, the chain complex S•(X × Y ;R) is quasi-isomorphic to S•(X;R)⊗R S•(Y ;R).

First, an example.

Example 6.37. What is the homology of RP2 ×RP2 over F2? It’s EZ with Eileberg-Zilber.14 We
know the homology groups of RP2 cold, and EZ says

Hn(RP2 × RP2;F2) ∼=
⊕

p+q=n

Hp(RP2;F2)⊗Z Hq(RP2;F2).

Plugging in the homology groups and recalling that F2 ⊗ F2
∼= F2, we get the table

n Hn(RP2 × RP2)
0 F2

1 F2 ⊕ F2

2 F2 ⊕ F2 ⊕ F2

3 F2 ⊕ F2

4 F2

5 0

♦

Exercise 6.38. Do the computations to verify that the table in Example 6.37 is correct.

We won’t prove the Eilenberg–Zilber theorem; you can see these notes, or surely many other
places, for the full proof. Instead, we’ll focus on the canonical map that provides an isomorphism.

The Alexander–Whitney map α : S•(X × Y ;R)→ S•(X;R)⊗R S•(Y ;R) is defined as follows.
Since α is a chain map, there is a homomorphism of R-modules

αn : Sn(X × Y ;R)→
⊕

p+q=n

Sp(X;R)⊗R Sq(Y ;R).

To define these maps, we will define auxiliary maps αp,q : Sp+q(X×Y ;R)→ Sp(X;R)⊗RSq(Y ;R)
for each p, q ≥ 0; then we can set α(c) =

⊕
p+q=n αp,q(c).

Remember that αp,q will be defined on the free abelian group generated by the (p+q)-simplices.
To define αp,q, we only need to specify αp,q(σ) for every map σ : ∆p+q → X×Y . We do this simply
by restriction. Let α|k denote the restriction of α to the first k coordinates of ∆p+q and α|k denote
the restriction to the last k coordinates of ∆p+q. (These are called the front and back k-simplices of
∆p+q, respectively.) Also, let π1 denote the projection onto the first coordinate of σ and π2 denote
the projection onto the second coordinate of σ. We can then define αp,q = (π1 ◦ α)|p ⊗ (π2 ◦ α)|q.
This completely determines the Alexander-Whitney map.

14 get it?
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7.1. homology & co.
Remember that in the currying isomorphism, there is a sort of duality between the tensor product
and the Hom functor. Cohomology exploits this duality to create a parallel theory that marches
in the opposite direction, reversing each arrow in homology. It starts with a definition.

Definition 7.1. For any semisimplicial set X and abelian group M , we define Sn(X ;M) =
HomAb

(
Sn(X ),M

)
. An element of Sn(X ;M) is called a singular n-cochain.

As usual, if X is a topological space, we write Sn(X;M) for Sn
(

Singn(X);M
)
. A homomor-

phism Sn(X ) → M is defined by a function X → M and vice versa. We may also define, for any
commutative ring R and R-module M , the set Sn(X ;M) = HomModR

(
Sn(X ),M

)
. We’ll switch

back an forth between these: Abelian groups are easier to think about, but everything we say
about them works in the more general case of modules over a commutative ring.

As you might expect, these groups assemble themselves into a chain complex.

Definition 7.2. The cohomology boundary map ∂n : Sn(X ;M) → Sn+1(X ;M) is defined by
∂nf(σ) = (−1)n+1f(∂Xσ), where ∂X is the boundary map in X .

Wait a minute! That map goes in the wrong direction! I told you the arrows would be
reversed, didn’t I? To make things fit into the category theory and algebra of chain complexes,
(co)homological algebraists will sometimes define an actual chain complex S∗(X ;M), where the
degree −k part is Sk(X ;M). Then ∂n is a degree-lowering map from degree −n to degree −n− 1,
as it “should be.”

But there’s some other monkey business going on: What’s up with the sign (−1)n+1? If you’re
only going to do basic cohomology, the sign is irrelevant: ker(∂n) and im(∂n) are the same whether
we use the sign or not. But if you want cohomology to interact nicely with homology, then the sign
is necessary. Pages 81–82 of Miller’s notes provide a good justification for why you might want to
include the sign.

1 Be wary! Hatcher omits the sign. If you’re comparing with his textbook, some things
might correspondingly differ.

These issues aside, we do in fact get what we want:

∂n+1 ◦ ∂nf(σ) = (−1)n+1(−1)n+2f(∂2σ) = 0.

So S∗(X ;M) is a chain complex. We write Hq(X ;M) for the qth cohomology group of this chain
complex:

Hq(X ;M) = H−q

(
S∗(X ;M)

)
.

Explicitly, Hq(X ;M) = ker(∂q)/ im(∂q−1).
Let’s do a first example that parallels Exercise 3.1. What is the 0th cohomology group of a

topological space X? Well, ∂−1 is the zero map, so its image is 0 and H0(X;M) ∼= ker(∂0). Every
element in S0(X;M) is just a function Sing0(X) → M , or, in other words, a (not necessarily
continuous) function X → M . Say f ∈ S0(X;M). To evaluate ∂0(f), which lies in S1(X;M),
pick a 1-simplex σ : ∆1 → X and calculate

(∂0f)(σ) = −f(∂σ) = −f
(
σ(e1)− σ(e0)

)
= f(e0)− f(e1).

If f ∈ ker ∂0, then f is constant on every path component of X and vice versa. So:
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Proposition 7.3. If X is a topological space, then H0(X;M) is isomorphic to the set of functions
π0(X) → M , where π0(X) is the collection of path-connected components of X. In other words,
H0(X;M) ∼=

∏
i∈π0(X)M .

This means that, if X has only finitely many path components, then H0(X) ∼= H0(X). This
is not true if π0(X) is infinite, since H0(X) is then a direct product and has no countable basis,
while H0(X) is a direct sum with a countable basis.

7.2. the (n)Ext functor
The dual functor to Hom is the Ext functor.

Definition 7.4. Suppose that M and N are R-modules and F• is a free resolution of M . Applying
the functor Hom(−, N) to this sequence, we get a cochain complex

0→ Hom(F0, N)→ Hom(F1, N)→ Hom(F2, N)→ · · ·

The Ext functor ExtnR(M,N) is the nth cohomology group of this sequence: ExtnR(M,N) = H −
−n

(
Hom(F•, N)

)
.

Importantly, the definition of Ext is independent of the choice of free resolution of M . This is
proven in pretty much the same way as it was for the Tor functor, using the fundamental theorem
of homological algebra. If M is a free R-module, then ExtnR(M,N) = 0 for every n > 0, since M•
is already a free resolution of M . In particular, if R is a field, then M is necessarily free.

Example 7.5. To calculate Ext1Z(Z2,Z2), first take a free resolution 0→ Z ×2−−→ Z→ 0 of Z2. The
only maps in Hom(Z,Z2) is 1 7→ 1 and 1 7→ 0, so the cochain complex looks like 0→ Z2

f−→ Z2 → 0.
But what is this map f∗? It’s induced by the map ×2 in the free resolution. If g ∈ Hom(Z,Z2)
with g(1) = x, then f∗ ◦ g is a map Z→ Z2 given by 1 7→ x 7→ 2x = 0. So f∗ is the zero map, and
the cochain complex looks like

0→ F2
×0−−→ F2 → 0→ · · ·

Thus ExtnZ(Z2,Z2) = F2 if n = 0, 1 and ExtnZ(Z2,Z2) = 0 otherwise. ♦

This funky functor plays the role of Tor in the dual universal coefficients theorem.

Theorem 7.6 (Cohomology UCT). If C• is a chain complex of free Z-modules and M is an abelian
group, then

Hq(C•;M) ∼= HomZ
(
Hq(C•),M

)
⊕ Ext1Z

(
Hq−1(C•),M

)
.

You can see a proof in Miller’s notes. Here is one important take-away. In the UCT, only the
homology groups of the chain complexes are used, so: If C• and D• are quasi-isomorphic, then
their cohomology groups are the same! So instead of using the cumbersome singular chain complex
of a topological space, we can use, for example, the cellular chain complex or a semisimplicial set
derived from a triangulation. Let’s see a few examples.

Example 7.7. First up, our old pal RP2: Let’s calculate H∗(RP2;Z). We’ll use the cellular chain
complex C• = 0→ Z ×2−−→ Z ×0−−→ Z→ 0. Each element in Hom(Z,Z) is completely determined by
the image of 1, so Hom(Z,Z) ∼= Z. So the cochain complex looks like 0 → Z{f0}

∂0

−→ Z{f1}
∂1

−→
Z{f2} → 0, where fi : 1 7→ 1 and Sn(RP2;Z) = Z{fn} for n = 0, 1, 2; and Sn(RP2;Z) = 0
otherwise. We can calculate the differential maps like this: ∂0f0 is a map from the degree-1 term
of C• to Z defined by

(∂0f0)(x) = −f1(∂1x) = −f1(0) = 0,
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so ∂0 is the zero map. Similarly,

(∂1f1)(x) = f2(∂2x) = 2f2(x),

so ∂1 is the doubling map. The cohomology chain complex therefore looks like 0 → Z ×0−−→ Z ×2−−→
Z→ 0, so we have

Hq(RP2;Z) ∼=


Z if q = 0

Z2 if q = 2

0 otherwise.
♦

Exercise 7.8. Calculate Hq(RP2;F2) using the same method as above.

Now an example using the cohomology UCT.

Example 7.9. The universal coefficient theorem tells us that

H1(RP2;F2) = Hom
(
H1(RP2;Z),F2

)
⊕ Ext1Z(Z,F2).

Since Z is free, the Ext term vanishes. So H1(RP2;F2) is isomorphic to Hom(F2,F2) ∼= F2. ♦

Exercise 7.10. Calculate H2(RP2;F2) using the UCT and Example 7.5.

7.3. the cohomology ring
We can assemble all the cohomology groups into one big monster:

H∗(X;R) :=
⊕
n≥0

Hn(X;R).

Each term Hn(X;R) is an R-module, so the whole direct sum is an R-module, as well. This kind
of direct sum is called a graded R-module. The goal of this section is to define a product that
turns this structure into a ring. Up to this point, we’ve basically just rephrased homology with
coefficients as cohomology. Introducing this product will be something new, and it will allow us
to distinguish even more spaces. Let’s get started.

Lemma 7.11. If C• and D• are chain complexes of R-modules, then there is a map

S•(C•;R)⊗ S•(D•;R) −→ S•(C• ⊗D•;R)

defined by sending the tensor product of f : Cp → R and g : Cq → R to the map h : C• ⊗D• → R
defined by

h(cp ⊗ dq) =

{
(−1)pqf(cp)g(dq) if cp ∈ Cp and dq ∈ Dq

0 otherwise.
If Hn(C•) is finitely generated for every n, then this map is an isomorphism.

Theorem 7.12 (Cohomology cross product). If X and Y are topological spaces, there is a map

H∗(X;R)⊗H∗(Y ;R) −→ H∗(X × Y ;R)

of graded R-modules that is an isomorphism if Hn(X;R) is free and finitely generated for each
n ∈ Z.

Since H∗(X;R) and H∗(Y ;R) are both graded rings (in particular, direct products), their
tensor product is graded, with the part in degree n being⊕

p+q=n

Hq(X;R)⊗R H
p(X;R).
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So to prove the statement, we need to prove it for each degree: When Hn(X;R) is free and
finitely generated, this says

Hn(X × Y ;R) ∼=
⊕

p+q=n

Hp(X;R)⊗R H
q(Y ;R),

which is a kind of coEilenberg–Zilber theorem.

Proof of Theorem 7.12. First, apply the UCT to get a map(
H∗(X;R)⊗R H

∗(Y ;R)
)
n
=

⊕
p+q=n

H−p

(
S•(X);R)⊗H−q

(
S•(Y );R) −→ H−n

(
S•(X)⊗ S•(Y );R

)
.

If Hn(X) is free for every n ∈ Z, then the Tor terms vanish in the UCT, so this map is an
isomorphism. Lemma 7.11 provides a map

H−n

(
S•(X)⊗ S•(Y );R

)
−→ H−n

(
Hom(S•(X)⊗ S•(Y ), R)

)
which is an isomorphism if the Hn(X) are finitely generated. The Alexander–Whitney map induces
a map

H−n

(
Hom(S•(X)⊗ S•(Y ), R)

)
−→ H−n

(
Hom(S•(X × Y ), R

)
;

this is always an isomorphism. (The arrow is in the opposite direction of the Alexander–Whitney
map because cohomology is contravariant.) Finally, the definition of cohomology gives us

H−n

(
Hom(S•(X × Y ), R

) ∼= H−n

(
S•(X × Y );R

) ∼= Hn(X × Y ;R).

Composing all these maps proves the theorem.

Given a topological space X, we’ll let ∆ denote the diagonal map X → X × X that sends
x 7→ (x, x). Since cohomology is contravariant, the diagonal map induces a map H∗(X ×X;R)→
H∗(X;R). With this, we can define a product structure on H∗(X;R).

Definition 7.13. The cup product multiplication on H∗(X;R) is the composite map

H∗(X;R)⊗R H
∗(X;R) −→ H∗(X ×X;R)

∆∗

−−−→ H∗(X;R).

The image of x⊗ y under this map is denoted x ^ y.

An element x ∈ Hp(X;R) is called homogeneous of degree p, and we write |x| = p. Every
element of H∗(X;R) is a finite sum of homogeneous elements. If x and y are homogeneous
elements of degree p and q, respectively, then their cup product x ^ y is a homogeneous element
of degree p+ q. (You can verify this by tracing through the maps in the proof of Theorem 7.12.)

So how do we actually compute the cup product of two elements? Each element f̄ ∈ Hp(X;R)
is actually an equivalence class of cocycles: functions f : Singp(X)→ R that satisfy ∂pf = 0, that
is, f(∂p+1σ) = 0 for every σ : ∆p+1 → X. (In short: equivalence classes of elements in ker ∂p.) If
ḡ ∈ Hq(X;R), then we can compute f̄ ^ ḡ as follows: First fix any functions f : Singp(X)→ R and
g : Singq(X) → R in the equivalence classes f̄ and ḡ, respectively. Then f̄ ^ ḡ is the equivalence
class of the function f ^ g : Singp+q(X)→ R defined by

(f ^ g)(σ) = (−1)pqf(σ|p)g(σ|q)
for every σ : ∆p+q → X. (Recall that σ|p is the restriction of σ to the front p face and σ|q is the
restriction to the back q face.)

Where does this formula come from? The Alexander–Whitney map along with Lemma 7.11.
You can trace through the maps, if you want, to see how this comes out. The point is, this gives
a method to explicitly calculate the cup product of two elements. It’s a bit arduous, and we’ll
develop tools to avoid doing it, but it is possible.

At this point, I will state some facts about the cup product. Some of them are easy to prove;
some of them are harder.
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1. There is an identity element 1 ∈ H0(X;R) such that 1^ x = x ^ 1 = x for every f ∈
H∗(X;R).

2. The cup product is associative.
3. If x and y are homogeneous elements of H∗(X;R) with degrees p and q, respectively, then
x ^ y = (−1)pqy ^ x.

Of these, the last is definitely the most surprising. The cup product is not commutative; rather,
it’s what’s called graded-commutative.

Let’s start with the easiest one: identity.

Proposition 7.14. Let 1 : Sing0(X) → R be the function that sends each simplex σ0 → X to
1 ∈ R. The image 1̄ of 1 in cohomology is the identity element for the cup product on H∗(X;R).
Proof. This follows directly from our formula for the cup product: If f̄ ∈ Hp(X;R), then

(f ^ 1)(σ) = (−1)p·0f(σ|p)1(σ|0) = f(σ),

since the front p-face of σ : ∆p → X is σ itself. The calculation for 1 ^ f is similar.

Next: associativity.

Proposition 7.15. The cup product on H∗(X;R) is associative.
Proof. Suppose that f̄ , ḡ, h̄ ∈ H∗(X;R) are homogeneous of degree p, q, and r, respectively. Then
(f̄ ^ ḡ)^ h̄ is the equivalence class of (f ^ g)^ h, which we can calculate. Let σ : ∆p+q+r → X
and σ|q denote restriction to the “middle” q-face of σ (that is, to the coordinates p, p+1, . . . , p+q).
Then (

(f ^ g)^ h
)
(σ) = (−1)(p+q)r(f ^ g)(σ|p+q)h(σ|r)

= (−1)pr+qr(−1)pqf(σ|p) g(σ|q )h(σ|r).

Expanding out the product f ^ (g ^ h) gives the same result, so the cup product is associative.

The fact that x ^ y = (−1)pqy ^ x whenever |x| = p and |y| = q is harder to prove. So I’ll just
authoritatively state it as a proposition.

Proposition 7.16. If x, y ∈ H∗(X;R) are homogeneous elements of degree p and q, respectively,
then x ^ y = (−1)pqy ^ x.

Graded commutativity has the odd consequence that if x is a homogeneous element with odd
degree, then x ^ x = −(x ^ x); that is, 2(x ^ x) = 0. So whenever 2 is not a zero-divisor in R and
x is a homogeneous element with odd degree, then x ^ x = 0.

Putting everything we’ve done together, we find that H∗(X;R), with the cup product, is what’s
called a graded commutative ring.

Let’s close with a few example computations.

Example 7.17. We will compute the cohomology ring of Sn (with n ≥ 1). First, what are the
cohomology groups? The cellular chain complex for Sn has Z in degrees n and 0, so S•(Sn) (what
a notation clash!) has Z in degrees 0 and −n. (Check this!) So Hq(Sn) = Z if q = 0, n and
Hq(Sn) = 0 for q 6= 0, n. There’s actually not much to compute in this example! We can write

H∗(Sn;Z) =


Z{1} in degree 0
Z{x} in degree n
0 in all other degrees.

Here, x is just some generator for Hn(Sn). Since 1 is the identity, we just need to compute x ^ x
to know the full product structure of H∗(Sn). But x ^ x is a homogeneous element of degree 2n,
and there’s only one of those: x ^ x = 0. As a ring, then, H∗(Sn) ∼= Z[x]/x2, where |x| = n. ♦
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Example 7.18. Now let’s do something a little more involved: the cohomology ring of the Klein
bottle K with F2 coefficients. We can first take a simplicial realization of the bottle like this:

b

b

a a
cU

L

The chain complex for this geometric realization looks like
· · · → 0→ F2{U,L} → F2{a, b, c} → F2{v} → 0

with
∂U = b− c+ a = a+ b+ c

∂L = a− b+ c = a+ b+ c

∂a = ∂b = ∂c = 0.

∂v = 0.

(Remember that the ring of coefficients is F2, where x = −x.) Dualizing, we get the cohomological
chain complex

0→ F2{δv} → F2{δa, δb, δc} → F2{δU , δL} → 0→ · · ·
where δa : F2{a, b, c} → F2 is the group homomorphism that satisfies δa(n1a + n2b + n3c) = n1;
and similar definitions for the others. (These are the group homomorphisms induced by the
characteristic functions.) Their boundaries are defined as follows. First, ∂2(U) = ∂2(L) = 0, since
∂2 is necessarily the zero map. Next simplest, ∂0δv is an element in F2{δa, δb, δc}; more to the
point, it’s a function F2{a, b, c} → F2. To figure it out, we simply evaluate it at a, b, and c:

∂0δv(a) = δv(∂1a) = δv(0) = 0.

Similar calculations will tell you that ∂0δv(b) = ∂0δv(c) = 0, so ∂0δv = 0, the zero map. Finally,
the middle maps. We apply the same procedure:

∂1δa(U) = δa(∂2U) = δa(b− c+ a) = 1

and
∂1δa(L) = δa(∂2L) = δa(a− b+ c) = 1.

So ∂1δa = δU + δL. If you do similar calculations, you’ll find that ∂1δa = ∂1δb = ∂1δc.
Now we can calculate the cohomology groups of the Klein bottle. The kernel of ∂2 is F2{U,L},

while the image of ∂1 is δU + δL. Denoting by δU the image of δU in the cohomology group, we
have H2(K;F2) = F2{δU}.

Moving on, the kernel of ∂1 is generated by δa + δb and δa + δc (remember that we have F2

coefficients), while the image of ∂0 is {0}. Letting δa,b and δb,c denote the images of δa + δb and
δb + δc in the cohomology group, we have H1(K;F2) = F2{δa,b, δb,c}.

Finally, the kernel of ∂0 is generated by δv, so H0(K;F2) = F2{δv}. Putting this all together,
we get

H∗(K;F2) ∼=


F2{δv} in degree 0
F2{δa,b, δb,c} in degree 1
F2{δU} in degree 2
0 otherwise.

Now we need to calculate the cup products. Some are easy: There are only two elements in F2{δv}:
the zero element and δv. Since the identity element of H∗(K;F2) must be in here and it can’t be
0, it must be δv. Also, δU ^ δU = 0 for degree reasons; as does δa,b ^ δU and δb,c ^ δU .
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The remaining interesting products are those between homogeneous degree-1 elements. For
these, we can just work through the calculation, which are somewhat easier, since in F2, we don’t
have to worry about signs. To determine δa,b ^ δa,b, we calculate(

(δa + δb)^ (δa + δb)
)
(U) = (δa + δb)(U |1) (δa + δb)(U |1)

= (δa + δb)(a) (δa + δb)(b)

= 0

and (
(δa + δb)^ (δa + δb)

)
(L) = (δa + δb)(L|1) (δa + δb)(L|1)

= (δa + δb)(c) (δa + δb)(a)

= 1.

So δa,b ^ δa,b = δU . You can similarly calculate that

δa,b ^ δb,c = δU

δb,c ^ δb,c = 0.

Together with graded commutativity (which implies that δb,c ^ δa,b = δU , as well), this completely
determines the structure of the ring H∗(K;F2). ♦

Exercise 7.19. Determine the ring structure of H∗( ;F2).

7.4. cohomology of composite spaces
The motto of this section is: Basically everything that we’ve proved for homology is true for
cohomology with the same proofs.

So, taking that as an axiom, let’s state some results.

Theorem 7.20. H∗(X t Y ;R) ∼= H∗(X;R)⊕H∗(Y ;R) as graded rings.

If X and Y are pointed spaces, meaning that they have distinguished points x ∈ X and y ∈ Y ,
then their wedge product X∨Y is defined by gluing X and Y together at a point: (XtY )/(x ∼ y).
We determined the cohomology of the wedge product of spheres; in general,

Hn(X t Y ;R) ∼=

{
Hn(X ∨ Y ;R) if n > 0

H0(X ∨ Y ;R)⊕ Z if n = 0.

The case for cohomology is similar:

Theorem 7.21. If (X,x) and (Y, y) are pointed spaces, then the surjective map X t Y → X ∨ Y
induces a ring homomorphism H∗(X∨Y )→ H∗(XtY ) that is an isomorphism in positive degrees
and injective in degree 0.

Of course, we can always calculate H0(X t Y ;R) explicitly using Proposition 7.3.

Example 7.22. The cohomology ring of S1 ∨ S2 (which is independent of the chosen base point)
is

H∗(S1 ∨X2) ∼=


Z{1} in degree 0
Z{x} in degree 1
Z{y} in degree 2
0 otherwise.

Since H∗(S1 ∨ S2) is a subring of H∗(S1 t S2) ∼= H∗(S1) ⊕ H∗(S2) (this is Theorem 7.21), we
can determine the cup products in H∗(S1 ∨ S2) by the cup products in the product ring. So, for
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example, x ^ x = 0 in the ring H∗(S1), so (x, 0)^ (x, 0) = (0, 0) in the ring H∗(S1) ⊕ H∗(S2).
Similarly, y ^ y = 0. Because x ^ y is a homogeneous element of degree 3, we know x ^ y = 0.
This determines all products. So, as a graded ring, H∗(S1 ∨ S2) ∼= Z[x]/(x2) ⊕ Z[y]/(y2) with
|x| = 1 and |y| = 2. ♦

And now: How might we calculate the cohomology ring of a cross product of two space?

Theorem 7.23. The cohomology cross product is a homomorphism of graded rings with the mul-
tiplication

(a1 ⊗ b1)^ (a2 ⊗ b2) = (−1)|b1||a2|
(
(a1 ^ a2)⊗ (b1 ^ b2)

)
in the ring H∗(X;R)⊗R H

∗(Y ;R). This map is an isomorphism if Hn(X;R) is free and finitely
generated for every n ∈ Z.

Let’s see this in action.

Example 7.24. I hope you’ve done Exercise 7.19; now we’ll compute it another way, using the
equation = S1 × S1. Since Hn(S

1) is free and finitely generated,

H∗( ) ∼= H∗(S1)⊗H∗(S1) ∼=


Z{1⊗ 1} in degree 0
Z{1⊗ x, x⊗ 1} in degree 1
Z{x⊗ x} in degree 2
0 otherwise.

The products are easy to calculate with Theorem 7.23. For example:

(1⊗ x)^ (x⊗ 1) = (−1)|x|·|x|
(
(1 ^ x)⊗ (x ^ 1)

)
= −(x⊗ x).

You can calculate the rest of the products, should you wish. ♦

7.5. cohomology ring as an invariant
Why cohomology?

This is an excellent question—wasn’t homology, plain and simple, complicated enough? In
some sense, yes: Everything in cohomology is determined by homology. Strictly speaking, even
the product structure of the cohomology ring comes from the homology structure; it’s just that in
homology, what you have is a “coproduct.” and it’s pschologically much easier to deal with rings
and algebras than co-rings and coalgebras. Plus, we get to immediately import everything from
algebra when we work with cohomology rings; we don’t have to build up an entire dual theory.

Either way you spin it—cohomological algebras or homologial coalgebras—the product struc-
ture that you get is genuinely useful: It can distinguish more spaces than simple homology groups
can. Let’s see an example.

Attach two copies of S1 at two different points of the sphere S2 to obtain the space �������� =
(S2 ∨ S1) ∨ S1. You can use Theorem 7.21 to calculate that

H∗(��������) ∼=


Z{1} in degree 0
Z{y1, y2} in degree 1
Z{x} in degree 2
0 otherwise.

But we’ve also calculated the cohomology of the torus, and Hn(��������) = Hn( ) for every n ∈ Z.
The cohomology groups of these spaces, then, cannot distinguish them. (Neither can the homology
groups.) Are they actually different spaces, up to homotopy? It seems like not—there are two
points in �������� that, if removed, disconnect the space, whereas has no such point. But that only
shows that they’re not homeomorphic.
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In fact, the ring structure of H∗(��������) differs from H∗( ), and this shows that �������� and
are not homotopy equivalent. In H∗(��������), the square of every homogeneous element of degree 1
is 0. This is because H∗(��������) is a subring of H∗(S2) ⊕ H∗(S1) ⊕ H∗(S1), and this inclusion is
an isomorphism in positive degrees. On the other hand, the squares of homogeneous elements
in degree 1 of H∗( ) are nonzero. So these rings are not isomorphic, and the spaces are not
homotopy equivalent.

7.6. poincaré duality
Elements of Hq(X;R) are (equivalence classes of) functions that map q-simplices to R, while
elements of Hq(X;R) are (equivalence classes of) sums of q-simplices. This suggests the possibility
of an action of the cohomology groups on the homology groups: We can map the pair (f, c) ∈
Hq(X;R)×Hq(X;R) to f(c). This is a bilinear map, so it induces a mapHq(X;R)⊗Hq(X;R)→ R
given by f ⊗ c 7→ f(c). Well, as long as it’s well-defined. We need to make sure that the output of
this function doesn’t depend on the choice of representative from each equivalence class.

Lemma 7.25. Suppose that A ∂A−−→ B
∂B−−→ C is a chain complex and Hom(C;R)

∂∨
B−−→ Hom(B;R)

∂∨
A−−→

Hom(A;R) is its dual. The map

ϕ :
ker ∂∨A
im ∂∨B

⊗ ker ∂B
im ∂A

→ R

given by ϕ([f ]⊗ [c]) = f(c) is well-defined.
Proof. We define ϕ′ : ker ∂∨A ⊗ ker ∂B → R by ϕ′(f ⊗ c) = f(c). Since ϕ′ is bilinear, this is
well-defined. We now need to prove that ϕ′ is constant on equivalence classes [f ] and [c].

First, for any f ∈ ker ∂∨A and b ∈ im ∂A, we have f(b) = 0; so ϕ′(f ⊗ c) = ϕ′(f ⊗ d) when
[c] = [d]. To show that ϕ′ is constant on equivalence classes of im ∂∨B , pick a function g ∈ im ∂∨B .
This means that g = h∂B for some h : C → F2. In particular, for each c ∈ ker ∂B , we have
g(c) = h∂B(c) = 0. So ϕ′(g ⊗ c) = 0; therefore ϕ′ is constant on cosets of im ∂∨B .

This map is called the Kronecker pairing. Remember that the currying isomorphism associates
every map A⊗ B → C with a map A→ Hom(B,C). (The latter is called the adjoint map.) The
corresponding map for the Kronecker pairing is ψ : Hq(X;R) → HomModR

(
Hq(X;R), R

)
where

ϕ(f) is the map c 7→ f(c).

Definition 7.26. A pairing of two finitely generated R-modules M and N is a map M⊗RN → R.
The pairing is called perfect if the adjoint map is an isomorphism.

Given a pairing ϕ : M ⊗ N → R, algebraic topologists often write 〈x, y〉 for ϕ(x ⊗ y). If
M ⊗R N → R is a perfect pairing, then M is isomorphic to HomModR

(N,R), the dual of N .
Poinaré duality is a statement about pairings of the cohomology and homology of manifolds. So
we really should define a manifold first.

Definition 7.27. A n-dimensional manifold, or n-manifold for short, is a Hausdorff topological
space15 in which every point has a neighborhood that is homeomorphic to Rn.

So Rn is definitely an n-manifold. But so are Sn−1 and Dn \ Sn. (The closed unit disc is not
a manifold.) The torus is a 2-manifold, as is RP2. The wedge product S2 ∨ S2 is not a manifold,
since the point where the spheres are glued together has no neighborhood homeomorphic to R2,
even though every other point does.

Now we sneak into the halls of topology and steal the fact that

15 A topological space X is Hausdorff if every pair of points can be separated by open sets. Specifically: For every
pair of distinct points x, y ∈ X there are open sets U and V with x ∈ U and y ∈ V such that U ∩ V = ∅.
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Theorem 7.28. Every compact manifold is homotopy equivalent to a finite CW-complex.

Since it’s stolen, we don’t have to prove it.
This means that the (co)homology groups of a compact manifold are always finitely generated.

Now we can state Poincaré duality.

Theorem 7.29 (Poincaré duality). If M is a compact n-manifold, then there is a unique element
[m] ∈ Hn(M ;F2) such that, for all integers p and q with p+ q = n, the composition

Hp(M ;F2)⊗F2
Hq(M ;F2)

^−−→ Hn(M ;F2)
〈·,[m]〉−−−−→ F2

is a perfect pairing.

You might wonder why I’ve abruptly switched from an arbitrary ring to the very specific ring
F2. A version of Theorem 7.29 is true for arbitrary rings, but it takes much more machinery to
set up and state. (Though it might be considered a more “true” expression of the duality.) If all
you’re interested in is the F2-cohomology groups of a compact manifold, then Poincaré duality can
make this quite easy.

Example 7.30. Suppose that M is a 3-manifold with H0(M ;F2) ∼= F2 and H1(M ;F2) ∼= F2 ⊕ F2.
Then using the fact that 2 + 1 = 3 and Theorem 7.29, we have

H2(M ;F2) ∼= Hom
(
H1(M ;F2),F2

) ∼= F2 ⊕ F2.

And 0 + 3 = 3, so
H3(M ;F2) ∼= Hom

(
H0(M ;F2),F2

) ∼= F2.

Since Hk(M ;F2) ∼= 0 for every k < 0, we can use the same trick to conclude that Hq(M ;F2) = {0}
for every q > 3. So, using only the first two cohomology groups, we can to compute

Hq(M ;F2) ∼=



F2 if q = 0

F2 ⊕ F2 if q = 1

F2 ⊕ F2 if q = 2

F2 if q = 3

0 otherwise.

♦

Poincaré duality can be used to extract information about the ring structure (not just the
groups structure), as well.

Example 7.31. Let’s calculate H∗(RP2;F2). We know from earlier calculations (or you could
calculate right now, using the cellular chain complex) that Hq(RP2;F2) ∼= F2 for q = 0, 1, 2 and
Hq(RP2;F2) ∼= {0} otherwise. So

H∗(RP2;F2) ∼=


F2{1} in degree 0
F2{x} in degree 1
F2{y} in degree 2
0 all other degrees

since x ^ y = y ^ y = 0 (by considering degree), we only need to calculate x ^ x.
Conveniently, RP2 is a 2-manifold and 1 + 1 = 2. (It’s almost like this was planned.) Poincaré

duality says that the map

H1(RP2;F2)⊗F2
H1(RP2;F2)

^−−→ H2(RP2;F2)
〈·,[m]〉−−−−→ F2

is a perfect pairing for some [m] ∈ Hn(RP2;F2). In other words, this composition induces an
isomorphism H1(RP2;F2) ∼= Hom

(
H1(RP2;F2),F2

)
via the currying isomorphism. If the cup
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product in this composition is the zero map, then the composition is the zero map, which the
currying isomorphism takes to, you guessed it, the zero map—which is definitely not an iso-
morphism. So ^ : H1(RP2;F2) ⊗F2

H1(RP2;F2) → H2(RP2;F) cannot be the zero map. Since
H1(RP2;F2)⊗F2

H1(RP2;F2) has only two elements, 0 and x⊗ x, this means that x ^ x 6= 0. The
only other option is that x ^ x = y.

And there we have it: The multiplicative structure of H∗(RP2;F2) is given by x ^ x = y and
x ∪ y = y ∪ y = 0. In other words, H∗(RP2;F2) ∼= F2[x]/(x

3), where x has degree 1. ♦

In Example 7.22, we computed the cohomology ring of S1 ∨S2. Looking back, we can see that
Hq(RP2;F2) ∼= Hq(S1 ∨ S2;F2) for every q ∈ Z, so cohomology groups with F2 coefficients cannot
distinguish these two spaces. The ring structure, on the other hand, can. The nonzero degree-1
element in H∗(S1 ∨ S2;F2) squares to 0, while the nonzero degree-1 element in H∗(RP2;F2) does
not. (Of course S1 ∨ S2 isn’t even a manifold because of the wedge point.)

Example 7.32. You can calculate that

H∗(RP3;F2) ∼=



F2{1} in degree 0
F2{x} in degree 1
F2{y} in degree 2
F2{z} in degree 3
0 all other degrees.

The embedding RP2 ↪→ RP3 can be chosen to be a cellular map of CW-complexes, so it induces a
surjective homomorphism of graded rings H∗(RP3;F2)→ H∗(RP2;F2) which sends 1, x, and y to
1, x, and y, respectively, and z to 0 (in degree 3). A map of this form is an isomorphism in degrees
0, 1, and 2, so this tells us that x ^ x = y in H∗(RP3;F2). (Alternatively, you can go back to the
original way we calculated the cup product as

(f ^ g)(σ) = (−1)pqf(σ|p)g(σ|q)

and note that the equivalence classes in Hq(RP2;F2) and H1(RP3;F2) are the same for q = 0, 1, 2
for the same reason.) We also know that y ^ y = x ^ z = 0 (because of degree), so we need to
calculate x ^ y. Just apply the same reasoning as in the last example: Since 1 + 2 = 3 and RP3 is
a 3-mainfold, Poincaré duality tells us that x ^ y 6= 0; therefore x ^ y = z.

So x2 = y and x3 = z, which means that H∗(RP3;F2) ∼= F2[x]/(x
4). You can iterate this

reasoning to prove that H∗(RPn;F2) ∼= F2[x]/(x
n+1) for every n ∈ N. ♦

This calculation of the cohomology rings of RPn can be used to prove the Borsuk-Ulam theorem,
which has applications across topology and combinatorics.

Theorem 7.33 (Borsuk-Ulam). For every continuous function f : Sn → Rn, there is a point x ∈ Sn

for which f(x) = f(−x).

An alternative (but equivalent) statement is that for any odd continuous function f : Sn → Rn

(meaning that f(−x) = −f(x)), there is a point x ∈ Sn for which f(x) = 0. For a proof of the
Borsuk-Ulam theorem, see Miller’s notes.
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